3,941 research outputs found

    Chemiluminescent measurement of atmospheric acid

    Get PDF
    The design and construction of a gas phase acid sensitive analyzer are reported. These studies showed that the chemical system was a practical analytical method. A complete instrument was developed and prepared for field testing. A Titan 3-C rocket was scheduled for launching on February 11, 1974. Through preparations made by NASA Langley the instrument was set up to monitor the acid concentration in the rocket exhaust. Due to adverse wind conditions no acid was detected. This entire trip is described in detail

    On the diurnal variability of particle properties related to light absorbing carbon in Mexico City

    No full text
    International audienceThe mass of light absorbing carbon (LAC) in individual, internally mixed aerosol particles was measured with the Single Particle Soot Photometer (SP2) in April of 2003 and 2005 and evaluated with respect to concentrations of carbon monoxide (CO), particle bound polycyclic aromatic hydrocarbons (PPAH) and condensation nuclei (CN). The LAC and CO have matching diurnal trends that are linked to traffic patterns and boundary layer growth. The PPAH reaches a maximum at the same time as CO and LAC but returns rapidly back to nighttime values within three hours of the peak. The number of particles containing LAC ranges between 10% to 40% of all particles between 150 nm and 650 nm and the mass is between 5% and 25% of the total mass in this size range. The average LAC equivalent mass diameter varies between 160 and 230 nm and the thinnest coating of non-light absorbing material is observed during periods of maximum LAC mass. The coating varies between 10 nm and 30 nm during the day, but is a strong function of particle size. The mass absorption cross sections, ?abs, derived from the SP2, are 5.0±0.2 m2g?1 and 4.8±0.2 m2g?1, dependent on the optical model used to describe LAC mixtures. The LAC contributes up to 50% of the total light extinction in the size range from 100 nm to 400 nm. The estimated emission rate of LAC is 1200 metric tons per year in Mexico City, based upon the SP2 measurements and correlations between LAC and CO

    On the diurnal variability of particle properties related to black carbon in Mexico City

    No full text
    International audienceThe black carbon mass (BCM) of individual, internally mixed aerosol particles was measured with the Single Particle Soot Photometer (SP2) in April of 2003 and 2005. The average BCM, single particle BC mass fraction and BCM equivalent diameter were evaluated with respect to concentrations of carbon monoxide (CO), particle bound polycyclic aromatic hydrocarbons (PPAH) and condensation nuclei (CN). The BCM and CO have matching diurnal trends that are linked to traffic patterns and boundary layer growth. The PPAH reaches a maximum at the same hour as CO and BCM but returns rapidly back to nighttime values within three hours of the peak. The number of particles containing BCM ranges between 10% to 40% of all particles between 200 nm and 700 nm and the BCM is between 4% and 12% of the total mass in this size range. The average BC equivalent mass diameter varies between 300 and 400 nm and reaches its daily minimum value when BCM is a maximum. The BC particles have the thinnest coating of non-light absorbing material during periods of maximum BCM. The scattering and absorption coefficients, Bscat and Babs , derived from the SP2 measurements were compared with direct measurements from a nephelometer and soot photometer. The measured and derived Babs are in close agreement whereas the Bscat comparisons show larger discrepancies in absolute value and daily trends. Even though approximately 40% of the BCM is in particles with diameters smaller than 200 nm, the extinction coefficient is dominated by the BCM in particles larger than this size. The BCM contributes up to 20% of the total extinction in this size range. BCM is emitted at a rate of 1200 metric tons per year in Mexico City, based upon the SP2 measurements and correlations between BCM and CO

    Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b

    Get PDF
    (Abridged) In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmospheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. Here we present the analysis of spectra of the system at 2.3 micron, obtained at a resolution of R~100,000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet's thermal spectrum and the radial component of its orbital velocity. We detect molecular absorption from carbon monoxide and water vapor with a combined S/N of 6.3, at a projected planet orbital velocity of K_P = (142.8 +- 3.4) km/s, which translates into a planet mass of M_P = (0.98 +- 0.04) Jupiter masses, and an orbital inclination of i = (67.7 +- 4.3) degrees, using the known stellar radial velocity and stellar mass. The detection of absorption features rather than emission means that, despite being highly irradiated, HD 179949 b does not have an atmospheric temperature inversion in the probed range of pressures and temperatures. Since the host star is active (R_HK > -4.9), this is in line with the hypothesis that stellar activity damps the onset of thermal inversion layers owing to UV flux photo-dissociating high-altitude, optical absorbers. Finally, our analysis favors an oxygen-rich atmosphere for HD 179949 b, although a carbon-rich planet cannot be statistically ruled out based on these data alone.Comment: 10 pages, 9 figures. Accepted for publication in Astronomy and Astrophysic

    Exoplanet atmospheres with GIANO. I. Water in the transmission spectrum of HD 189733b

    Get PDF
    High-resolution spectroscopy (R \ge 20,000) at near-infrared wavelengths can be used to investigate the composition, structure, and circulation patterns of exoplanet atmospheres. However, up to now it has been the exclusive dominion of the biggest telescope facilities on the ground, due to the large amount of photons necessary to measure a signal in high-dispersion spectra. Here we show that spectrographs with a novel design - in particular a large spectral range - can open exoplanet characterisation to smaller telescope facilities too. We aim to demonstrate the concept on a series of spectra of the exoplanet HD 189733 b taken at the Telescopio Nazionale Galileo with the near-infrared spectrograph GIANO during two transits of the planet. In contrast to absorption in the Earth's atmosphere (telluric absorption), the planet transmission spectrum shifts in radial velocity during transit due to the changing orbital motion of the planet. This allows us to remove the telluric spectrum while preserving the signal of the exoplanet. The latter is then extracted by cross-correlating the residual spectra with template models of the planet atmosphere computed through line-by-line radiative transfer calculations, and containing molecular absorption lines from water and methane. By combining the signal of many thousands of planet molecular lines, we confirm the presence of water vapour in the atmosphere of HD 189733 b at the 5.5-σ\sigma level. This signal was measured only in the first of the two observing nights. By injecting and retrieving artificial signals, we show that the non-detection on the second night is likely due to an inferior quality of the data. The measured strength of the planet transmission spectrum is fully consistent with past CRIRES observations at the VLT, excluding a strong variability in the depth of molecular absorption lines.Comment: 10 pages, 8 figures. Accepted for publication in Astronomy & Astrophysics. v2 includes language editin

    The apparent roughness of a sand surface blown by wind from an analytical model of saltation

    Full text link
    We present an analytical model of aeolian sand transport. The model quantifies the momentum transfer from the wind to the transported sand by providing expressions for the thickness of the saltation layer and the apparent surface roughness. These expressions are derived from basic physical principles and a small number of assumptions. The model further predicts the sand transport rate (mass flux) and the impact threshold (the smallest value of the wind shear velocity at which saltation can be sustained). We show that, in contrast to previous studies, the present model's predictions are in very good agreement with a range of experiments, as well as with numerical simulations of aeolian saltation. Because of its physical basis, we anticipate that our model will find application in studies of aeolian sand transport on both Earth and Mars

    Effect of Javanese turmeric (Curcuma xanthorrhiza Roxb.) extract on natural microflora of oyster mushroom (Pleurotus sajur-caju) and its sensory acceptability

    Get PDF
    The effects of methanolic extract of Javanese turmeric (Curcuma xanthorrhiza Roxb.) at different level of concentrations on the inactivation of Bacillus cereus, Escherichia coli, Pseudomonas spp. and Staphylococcus aureus in oyster mushroom (Pleurotus sajor-caju) were investigated. This study was conducted principally for the achievement on the best combination between the susceptibility of C. xanthorrhiza extract on natural microflora and foodborne pathogenic bacteria with the sensory acceptability of the soaked oyster mushroom. Three different concentrations (g/ml), 0.05%, 0.50% and 5.00%, of C. xanthorrhiza extract prepared with dilution method were designed as sanitizing agent in treating the oyster mushroom at 5 minutes and 10 minutes. There was significance reduction in the survival of microbial load between the untreated fresh oyster mushroom and those soaked with 0.05%, 0.50% and 5.00% rhizome extract (P < 0.05). The relative best combination between antimicrobial ability and sensory acceptability can be achieved with 0.05% rhizome extract where it showed a significant bacterial population reduction (P<0.05) of 0.81, 0.73 and 5.54 log10 CFU/g for total plate count, B. cereus and Pseudomonas spp., as well as a higher mean scores for the tested sensory. The results showed that C. xanthorrhiza extract can be developed as natural sanitizer for food materials

    Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 microns

    Get PDF
    We report a 4.8 sigma detection of water absorption features in the day side spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R~100,000) spectra taken at 3.2 microns with CRIRES on the VLT to trace the radial-velocity shift of the water features in the planet's day side atmosphere during 5 h of its 2.2 d orbit as it approached secondary eclipse. Despite considerable telluric contamination in this wavelength regime, we detect the signal within our uncertainties at the expected combination of systemic velocity (Vsys=-3 +5-6 km/s) and planet orbital velocity (Kp=154 +14-10 km/s), and determine a H2O line contrast ratio of (1.3+/-0.2)x10^-3 with respect to the stellar continuum. We find no evidence of significant absorption or emission from other carbon-bearing molecules, such as methane, although we do note a marginal increase in the significance of our detection to 5.1 sigma with the inclusion of carbon dioxide in our template spectrum. This result demonstrates that ground-based, high-resolution spectroscopy is suited to finding not just simple molecules like CO, but also to more complex molecules like H2O even in highly telluric contaminated regions of the Earth's transmission spectrum. It is a powerful tool that can be used for conducting an immediate census of the carbon- and oxygen-bearing molecules in the atmospheres of giant planets, and will potentially allow the formation and migration history of these planets to be constrained by the measurement of their atmospheric C/O ratios.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter

    Towards photostatistics from photon-number discriminating detectors

    Get PDF
    We study the properties of a photodetector that has a number-resolving capability. In the absence of dark counts, due to its finite quantum efficiency, photodetection with such a detector can only eliminate the possibility that the incident field corresponds to a number of photons less than the detected photon number. We show that such a {\em non-photon} number-discriminating detector, however, provides a useful tool in the reconstruction of the photon number distribution of the incident field even in the presence of dark counts.Comment: 7 pages, 4 figure

    Lorentz invariant intrinsic decoherence

    Get PDF
    Quantum decoherence can arise due to classical fluctuations in the parameters which define the dynamics of the system. In this case decoherence, and complementary noise, is manifest when data from repeated measurement trials are combined. Recently a number of authors have suggested that fluctuations in the space-time metric arising from quantum gravity effects would correspond to a source of intrinsic noise, which would necessarily be accompanied by intrinsic decoherence. This work extends a previous heuristic modification of Schr\"{o}dinger dynamics based on discrete time intervals with an intrinsic uncertainty. The extension uses unital semigroup representations of space and time translations rather than the more usual unitary representation, and does the least violence to physically important invariance principles. Physical consequences include a modification of the uncertainty principle and a modification of field dispersion relations, in a way consistent with other modifications suggested by quantum gravity and string theory .Comment: This paper generalises an earlier model published as Phys. Rev. A vol44, 5401 (1991
    corecore