79 research outputs found

    An aggregate Laffer curve – a multi-peak case

    Get PDF
    In the current paper we propose to distinguish between micro and aggregate Laffer functions. We prove that in spite of the fact that a Laffer curve of any representative individual may have one peak point where tax revenue is at its maximum, the aggregate Laffer curve is more likely to have multiple peaks. We show this for the case where there is a high degree of wage distribution inequality along with a backward bending supply curve of labor, which appears to be the case for many Western countries. Since this scenario is typical of many countries, the welfare implications of the multi-peak Laffer curve should be considered by the policy maker

    Mechanism of Borrelia immune evasion by FhbA-related proteins

    Get PDF
    Author summaryRelapsing fever and Lyme Disease are infectious diseases caused by borrelia bacteria. Relapsing fever occurs sporadically worldwide, whereas distribution of Lyme Disease is restricted to the Northern Hemisphere. Both infections are transmitted to humans by blood eating ticks or lice. These infections are often difficult to diagnose due to nonspecific symptoms. To be able to cause infection, borrelia must circumvent the human immune responses. Here we describe a mechanism, how borrelia bacteria protect themselves in the human host by utilizing host proteins. By using X-ray crystallography, we solved the structure of an outer membrane protein FhbA from a relapsing fever causing borreliae, Borrelia hermsii, in complex with human complement regulator factor H. FhbA has a unique alpha-helical fold that has not been reported earlier. The structure of the complex revealed how FhbA binds factor H in a very specific manner. Factor H bound to FhbA on the surface of borrelia protects bacteria from the complement system and lysis. Based on the structure, we performed structure-guided sequence database analysis, which suggests that similar proteins are present in all relapsing fever causing borrelia and possibly in some Lyme disease agents. Immune evasion facilitates survival of Borrelia, leading to infections like relapsing fever and Lyme disease. Important mechanism for complement evasion is acquisition of the main host complement inhibitor, factor H (FH). By determining the 2.2 angstrom crystal structure of Factor H binding protein A (FhbA) from Borrelia hermsii in complex with FH domains 19-20, combined with extensive mutagenesis, we identified the structural mechanism by which B. hermsii utilizes FhbA in immune evasion. Moreover, structure-guided sequence database analysis identified a new family of FhbA-related immune evasion molecules from Lyme disease and relapsing fever Borrelia. Conserved FH-binding mechanism within the FhbA-family was verified by analysis of a novel FH-binding protein from B. duttonii. By sequence analysis, we were able to group FH-binding proteins of Borrelia into four distinct phyletic types and identified novel putative FH-binding proteins. The conserved FH-binding mechanism of the FhbA-related proteins could aid in developing new approaches to inhibit virulence and complement resistance in Borrelia.Peer reviewe

    Structural basis of rapid actin dynamics in the evolutionarily divergent Leishmania parasite

    Get PDF
    The authors report here the structure-function analysis of highly divergent actin from Leishmania parasite. The study reveals remarkably rapid dynamics of parasite actin as well as the underlying molecular basis, thus providing insight into evolution of the actin cytoskeleton. Actin polymerization generates forces for cellular processes throughout the eukaryotic kingdom, but our understanding of the 'ancient' actin turnover machineries is limited. We show that, despite > 1 billion years of evolution, pathogenic Leishmania major parasite and mammalian actins share the same overall fold and co-polymerize with each other. Interestingly, Leishmania harbors a simple actin-regulatory machinery that lacks cofilin 'cofactors', which accelerate filament disassembly in higher eukaryotes. By applying single-filament biochemistry we discovered that, compared to mammalian proteins, Leishmania actin filaments depolymerize more rapidly from both ends, and are severed > 100-fold more efficiently by cofilin. Our high-resolution cryo-EM structures of Leishmania ADP-, ADP-Pi- and cofilin-actin filaments identify specific features at actin subunit interfaces and cofilin-actin interactions that explain the unusually rapid dynamics of parasite actin filaments. Our findings reveal how divergent parasites achieve rapid actin dynamics using a remarkably simple set of actin-binding proteins, and elucidate evolution of the actin cytoskeleton.Peer reviewe

    Structural basis underlying specific biochemical activities of non-muscle tropomyosin isoforms

    Get PDF
    Publisher Copyright: © 2022 The Author(s)The actin cytoskeleton is critical for cell migration, morphogenesis, endocytosis, organelle dynamics, and cytokinesis. To support diverse cellular processes, actin filaments form a variety of structures with specific architectures and dynamic properties. Key proteins specifying actin filaments are tropomyosins. Non-muscle cells express several functionally non-redundant tropomyosin isoforms, which differentially control the interactions of other proteins, including myosins and ADF/cofilin, with actin filaments. However, the underlying molecular mechanisms have remained elusive. By determining the cryogenic electron microscopy structures of actin filaments decorated by two functionally distinct non-muscle tropomyosin isoforms, Tpm1.6 and Tpm3.2, we reveal that actin filament conformation remains unaffected upon binding. However, Tpm1.6 and Tpm3.2 follow different paths along the actin filament major groove, providing an explanation for their incapability to co-polymerize on actin filaments. We also elucidate the molecular basis underlying specific roles of Tpm1.6 and Tpm3.2 in myosin II activation and protecting actin filaments from ADF/cofilin-catalyzed severing.Peer reviewe

    Tropomodulins Control the Balance between Protrusive and Contractile Structures by Stabilizing Actin-Tropomyosin Filaments

    Get PDF
    Eukaryotic cells have diverse protrusive and contractile actin filament structures, which compete with one another for a limited pool of actin monomers. Numerous actin-binding proteins regulate the dynamics of actin structures, including tropomodulins (Tmods), which cap the pointed end of actin filaments. In striated muscles, Tmods prevent actin filaments from overgrowing, whereas in non-muscle cells, their function has remained elusive. Here, we identify two Tmod isoforms, Tmod1 and Tmod3, as key components of contractile stress fibers in non-muscle cells. Individually, Tmodl and Tmod3 can compensate for one another, but their simultaneous depletion results in disassembly of actin-tropomyosin filaments, loss of force-generating stress fibers, and severe defects in cell morphology. Knockout-rescue experiments reveal that Tmod's interaction with tropomyosin is essential for its role in the stabilization of actin-tropo-myosin filaments in cells. Thus, in contrast to their role in muscle myofibrils, in non-muscle cells, Tmods bind actin-tropomyosin filaments to protect them from depolymerizing, not elongating. Furthermore, loss of Tmods shifts the balance from linear actin-tropomyosin filaments to Arp2/3 complex-nucleated branched networks, and this phenotype can be partially rescued by inhibiting the Arp2/3 complex. Collectively, the data reveal that Tmods are essential for the maintenance of contractile actomyosin bundles and that Tmod-dependent capping of actin-tropomyosin filaments is critical for the regulation of actin homeostasis in non-muscle cells.Peer reviewe

    Caldesmon controls stress fiber force-balance through dynamic cross-linking of myosin II and actin-tropomyosin filaments

    Get PDF
    In this study the authors report that Caldesmon controls force-balance and architecture of stress fibers through dynamic cross-linking of actin and myosin filaments. Caldesmon depletion led to consequent problems in cell morphogenesis, motility and mechanosensing. Contractile actomyosin bundles are key force-producing and mechanosensing elements in muscle and non-muscle tissues. Whereas the organization of muscle myofibrils and mechanism regulating their contractility are relatively well-established, the principles by which myosin-II activity and force-balance are regulated in non-muscle cells have remained elusive. We show that Caldesmon, an important component of smooth muscle and non-muscle cell actomyosin bundles, is an elongated protein that functions as a dynamic cross-linker between myosin-II and tropomyosin-actin filaments. Depletion of Caldesmon results in aberrant lateral movement of myosin-II filaments along actin bundles, leading to irregular myosin distribution within stress fibers. This manifests as defects in stress fiber network organization and contractility, and accompanied problems in cell morphogenesis, migration, invasion, and mechanosensing. These results identify Caldesmon as critical factor that ensures regular myosin-II spacing within non-muscle cell actomyosin bundles, and reveal how stress fiber networks are controlled through dynamic cross-linking of tropomyosin-actin and myosin filaments.Peer reviewe

    Tropomyosin Isoforms Specify Functionally Distinct Actin Filament Populations In Vitro

    Get PDF
    Actin filaments assemble into a variety of networks to provide force for diverse cellular processes [1]. Tropomyosins are coiled-coil dimers that form head-to-tail polymers along actin filaments and regulate interactions of other proteins, including actin-de polymerizing factor (ADF)/cofilins and myosins, with actin [2-5]. In mammals, >40 tropomyosin isoforms can be generated through alternative splicing from four tropomyosin genes. Different isoforms display non-redundant functions and partially non-overlapping localization patterns, for example within the stress fiber network [6, 7]. Based on cell biological studies, it was thus proposed that tropomyosin isoforms may specify the functional properties of different actin filament populations [2]. To test this hypothesis, we analyzed the properties of actin filaments decorated by stress-fiber-associated tropomyosins (Tpm1.6, Tpm1.7, Tpm2.1, Tpm3.1, Tpm3.2, and Tpm4.2). These proteins bound F-actin with high affinity and competed with a-actinin for actin filament binding. Importantly, total internal reflection fluorescence (TIRF) microscopy of fluorescently tagged proteins revealed that most tropomyosin isoforms cannot co-polymerize with each other on actin filaments. These isoforms also bind actin with different dynamics, which correlate with their effects on actin-binding proteins. The long isoforms Tpm1.6 and Tpm1.7 displayed stable interactions with actin filaments and protected filaments from ADF/cofilin-mediated disassembly, but did not activate non-muscle myosin Ila (NMIIa). In contrast, the short isoforms Tpm3.1, Tpm3.2, and Tpm4.2 displayed rapid dynamics on actin filaments and stimulated the ATPase activity of NMIla, but did not efficiently protect filaments from ADF/cofilin. Together, these data provide experimental evidence that tropomyosin isoforms segregate to different actin filaments and specify functional properties of distinct actin filament populations.Peer reviewe

    Zebrafish GDNF and its co-receptor GFR alpha 1 activate the human RET receptor and promote the survival of dopaminergic neurons in vitro

    Get PDF
    Glial cell line-derived neurotrophic factor ( GDNF) is a ligand that activates, through coreceptor GDNF family receptor alpha-1 (GFR alpha 1) and receptor tyrosine kinase "RET ", several signaling pathways crucial in the development and sustainment of multiple neuronal populations. We decided to study whether non-mammalian orthologs of these three proteins have conserved their function: can they activate the human counterparts? Using the baculovirus expression system, we expressed and purified Danio rerio RET, and its binding partners GFRa1 and GDNF, and Drosophila melanogaster RET and two isoforms of coreceptor GDNF receptor-like. Our results report high-level insect cell expression of posttranslationally modified and dimerized zebrafish RET and its binding partners. We also found that zebrafish GFRa1 and GDNF are comparably active as mammalian cell- produced ones. We also report the first measurements of the affinity of the complex to RET in solution: at least for zebrafish, the Kd for GFR alpha 1-GDNF binding RET is 5.9 mu M. Surprisingly, we also found that zebrafish GDNF as well as zebrafish GFRa1 robustly activated human RET signaling and promoted the survival of cultured mouse dopaminergic neurons with comparable efficiency to mammalian GDNF, unlike E. coli-produced human proteins. These results contradict previous studies suggesting that mammalian GFRa1 and GDNF cannot bind and activate non-mammalian RET and vice versa.Peer reviewe

    A Numerical Study of Coulomb Interaction Effects on 2D Hopping Transport

    Full text link
    We have extended our supercomputer-enabled Monte Carlo simulations of hopping transport in completely disordered 2D conductors to the case of substantial electron-electron Coulomb interaction. Such interaction may not only suppress the average value of hopping current, but also affect its fluctuations rather substantially. In particular, the spectral density SI(f)S_I (f) of current fluctuations exhibits, at sufficiently low frequencies, a 1/f1/f-like increase which approximately follows the Hooge scaling, even at vanishing temperature. At higher ff, there is a crossover to a broad range of frequencies in which SI(f)S_I (f) is nearly constant, hence allowing characterization of the current noise by the effective Fano factor F\equiv S_I(f)/2e \left. For sufficiently large conductor samples and low temperatures, the Fano factor is suppressed below the Schottky value (F=1), scaling with the length LL of the conductor as F=(Lc/L)αF = (L_c / L)^{\alpha}. The exponent α\alpha is significantly affected by the Coulomb interaction effects, changing from α=0.76±0.08\alpha = 0.76 \pm 0.08 when such effects are negligible to virtually unity when they are substantial. The scaling parameter LcL_c, interpreted as the average percolation cluster length along the electric field direction, scales as LcE(0.98±0.08)L_c \propto E^{-(0.98 \pm 0.08)} when Coulomb interaction effects are negligible and LcE(1.26±0.15)L_c \propto E^{-(1.26 \pm 0.15)} when such effects are substantial, in good agreement with estimates based on the theory of directed percolation.Comment: 19 pages, 7 figures. Fixed minor typos and updated reference

    Activated I-BAR IRSp53 clustering controls the formation of VASP-actin–based membrane protrusions

    Get PDF
    Funding Information: Acknowledgments: The computations were supported by the University of Chicago Research Funding Information: The computations were supported by the University of Chicago Research Computing Center (RCC). We thank E. Coudrier and C. Simon for insightful discussions. We also thank F. Di Federico for handling plasmids, F. Tabarin-Cayrac for cell sorting, and A.-S. Mace for ImageJ programming assistance. F.-C.T., C.L.C., and P.B. are members of the CNRS consortium AQV. F.-C.T. and P.B. are members of the Labex Cell(n)Scale (ANR-11-LABX0038) and Paris Sciences et Lettres (ANR-10-IDEX-0001-02). We acknowledge the Cell and Tissue Imaging Core facility (PICT IBiSA), Institut Curie, member of the French National Research Infrastructure France-BioImaging (ANR10-INBS-04). This work was supported by Human Frontier Science Program (HFSP) grant RGP0005/2016 (to F.-C.T., J.M.H., G.A.V., P.L., and P.B.), Institut Curie and the Centre National de la Recherche Scientifique (CNRS) (to F.-C.T., J.M.H., and P.B.), Marie Curie actions H2020-MSCA-IF-2014 (to F.-C.T.), EMBO Long-Term fellowship ALTF 1527-2014 (to F.-C.T.), Pasteur Foundation Fellowship (to J.M.H.), Agence Nationale pour la Recherche ANR-20-CE13-0032 (to J.M.H. and P.B.) and ANR-20-CE11-0010-01 (to F.-C.T), Université Paris Sciences et Lettres-QLife Institute ANR-17-CONV-0005 Q-LIFE (to P.B.), FY 2015 Researcher Exchange Program between the Japan Society for the Promotion of Science and Academy of Finland (to Y.S.), the Takeda Science Foundation (to Y.S.), the Wesco Scientific Promotion Foundation (to Y.S.), Agence Nationale pour la Recherche ANR-18-CE13-0026-01 and ANR-21-CE13-0010-03 (to C.L.C.), Cancer Society Finland 4705949 (to P.L.), and U.S. National Institutes of Health (NIH) Institute of General Medical Sciences (NIGMS) grant R01-GM063796 (to G.A.V. and Z.J.) Publisher Copyright: Copyright © 2022 The Authors, some rights reserved.Filopodia are actin-rich membrane protrusions essential for cell morphogenesis, motility, and cancer invasion. How cells control filopodium initiation on the plasma membrane remains elusive. We performed experiments in cellulo, in vitro, and in silico to unravel the mechanism of filopodium initiation driven by the membrane curvature sensor IRSp53 (insulin receptor substrate protein of 53 kDa). We showed that full-length IRSp53 self-assembles into clusters on membranes depending on PIP2. Using well-controlled in vitro reconstitution systems, we demonstrated that IRSp53 clusters recruit the actin polymerase VASP (vasodilator-stimulated phosphoprotein) to assemble actin filaments locally on membranes, leading to the generation of actin-filled membrane protrusions reminiscent of filopodia. By pulling membrane nanotubes from live cells, we observed that IRSp53 can only be enriched and trigger actin assembly in nanotubes at highly dynamic membrane regions. Our work supports a regulation mechanism of IRSp53 in its attributes of curvature sensation and partner recruitment to ensure a precise spatial-temporal control of filopodium initiation.Peer reviewe
    corecore