640 research outputs found

    Cognitive Components of Regularity Processing in the Auditory Domain

    Get PDF
    BACKGROUND: Music-syntactic irregularities often co-occur with the processing of physical irregularities. In this study we constructed chord-sequences such that perceived differences in the cognitive processing between regular and irregular chords could not be due to the sensory processing of acoustic factors like pitch repetition or pitch commonality (the major component of 'sensory dissonance'). METHODOLOGY/PRINCIPAL FINDINGS: Two groups of subjects (musicians and nonmusicians) were investigated with electroencephalography (EEG). Irregular chords elicited an early right anterior negativity (ERAN) in the event-related brain potentials (ERPs). The ERAN had a latency of around 180 ms after the onset of the music-syntactically irregular chords, and had maximum amplitude values over right anterior electrode sites. CONCLUSIONS/SIGNIFICANCE: Because irregular chords were hardly detectable based on acoustical factors (such as pitch repetition and sensory dissonance), this ERAN effect reflects for the most part cognitive (not sensory) components of regularity-based, music-syntactic processing. Our study represents a methodological advance compared to previous ERP-studies investigating the neural processing of music-syntactically irregular chords

    Effects of Unexpected Chords and of Performer's Expression on Brain Responses and Electrodermal Activity

    Get PDF
    BACKGROUND: There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates event-related brain potentials (ERPs), skin conductance responses (SCRs) and heart rate (HR) elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts played by the pianists (with emotional expression), we also created versions without variations in tempo and loudness (without musical expression) to investigate effects of musical expression on ERPs and SCRs. Compared to expected chords, unexpected chords elicited an early right anterior negativity (ERAN, reflecting music-syntactic processing) and an N5 (reflecting processing of meaning information) in the ERPs, as well as clear changes in the SCRs (reflecting that unexpected chords also elicited emotional responses). The ERAN was not influenced by emotional expression, whereas N5 potentials elicited by chords in general (regardless of their chord function) differed between the expressive and the non-expressive condition. CONCLUSIONS/SIGNIFICANCE: These results show that the neural mechanisms of music-syntactic processing operate independently of the emotional qualities of a stimulus, justifying the use of stimuli without emotional expression to investigate the cognitive processing of musical structure. Moreover, the data indicate that musical expression affects the neural mechanisms underlying the processing of musical meaning. Our data are the first to reveal influences of musical performance on ERPs and SCRs, and to show physiological responses to unexpected chords in naturalistic music

    Comparing the Processing of Music and Language Meaning Using EEG and fMRI Provides Evidence for Similar and Distinct Neural Representations

    Get PDF
    Recent demonstrations that music is capable of conveying semantically meaningful information has raised several questions as to what the underlying mechanisms of establishing meaning in music are, and if the meaning of music is represented in comparable fashion to language meaning. This paper presents evidence showing that expressed affect is a primary pathway to music meaning and that meaning in music is represented in a very similar fashion to language meaning. In two experiments using EEG and fMRI, it was shown that single chords varying in harmonic roughness (consonance/dissonance) and thus perceived affect could prime the processing of subsequently presented affective target words, as indicated by an increased N400 and activation of the right middle temporal gyrus (MTG). Most importantly, however, when primed by affective words, single chords incongruous to the preceding affect also elicited an N400 and activated the right posterior STS, an area implicated in processing meaning of a variety of signals (e.g. prosody, voices, motion). This provides an important piece of evidence in support of music meaning being represented in a very similar but also distinct fashion to language meaning: Both elicit an N400, but activate different portions of the right temporal lobe

    The gray matter volume of the amygdala is correlated with the perception of melodic intervals: a voxel-based morphometry study

    Get PDF
    Music is not simply a series of organized pitches, rhythms, and timbres, it is capable of evoking emotions. In the present study, voxel-based morphometry (VBM) was employed to explore the neural basis that may link music to emotion. To do this, we identified the neuroanatomical correlates of the ability to extract pitch interval size in a music segment (i.e., interval perception) in a large population of healthy young adults (N = 264). Behaviorally, we found that interval perception was correlated with daily emotional experiences, indicating the intrinsic link between music and emotion. Neurally, and as expected, we found that interval perception was positively correlated with the gray matter volume (GMV) of the bilateral temporal cortex. More important, a larger GMV of the bilateral amygdala was associated with better interval perception, suggesting that the amygdala, which is the neural substrate of emotional processing, is also involved in music processing. In sum, our study provides one of first neuroanatomical evidence on the association between the amygdala and music, which contributes to our understanding of exactly how music evokes emotional responses

    Degradation of human kininogens with the release of kinin peptides by extracellular proteinases of Candida spp.

    Get PDF
    The secretion of proteolytic enzymes by pathogenic microorganisms is one of the most successful strategies used by pathogens to colonize and infect the host organism. The extracellular microbial proteinases can seriously deregulate the homeostatic proteolytic cascades of the host, including the kinin-forming system, repeatedly reported to he activated during bacterial infection. The current study assigns a kinin-releasing activity to secreted proteinases of Candida spp. yeasts, the major fungal pathogens of humans. Of several Candida species studied, C. parapsilosis and C. albicans in their invasive filamentous forms are shown to produce proteinases which most effectively degrade proteinaceous kinin precursors, the kininogens. These enzymes, classified as aspartyl proteinases, have the highest kininogen-degrading activity at low pH (approx. 3.5), but the associated production of bradykinin-related peptides from a small fraction of kininogen molecules is optimal at neutral pH (6.5). The peptides effectively interact with cellular B2-type kinin receptors. Moreover, kinin-related peptides capable of interacting with inflammation-induced B1-type receptors are also formed, but with a reversed pH dependence. The presented variability of the potential extracellular kinin production by secreted aspartyl proteinases of Candida spp. is consistent with the known adaptability of these opportunistic pathogens to different niches in the host organism

    Development of Standard Methods to Estimate Manure Production and Nutrient Characteristics From Dairy Cattle

    Get PDF
    Total collection data from many universities were pooled for statistical analyses to evaluate existing data from dairy animals and determine if one or more modifications were needed for Standard Table D384.1. Many of these studies were carried out to evaluate nutritional characteristics associated with different diets. The data collected were sufficient to evaluate total manure, total and volatile solids, and N excretion values. Some experiments had sufficient number of samples analyzed to evaluate P, K, Ca, Mg, Na, Cl, S, and micro-elements. Statistical analyses were conducted to determine if a single column value was appropriate and define the regression equations necessary to estimate excretions if the assumptions of the column inputs were not met. The results indicate that separate classifications are needed for replacement heifers and mature animals. Final classifications for replacement heifers included: milk fed calves, weaned calves weighing less than 274 kg, heifers weighing between 273 and 613 kg, and veal calves. Additionally, classifications for lactating and dry animals are needed. Previously, the estimates for manure production and nutrient excretion were based on body weight. These findings indicate that a better predictor for lactating cattle is daily milk production instead of body weight. Milk production drives feed intake in the lactating animal. It is most appropriate that estimated manure and nutrient excretion values reflect the relationship between feed intake, milk production (nutrient utilization) and nutrient excretion

    From understanding to appreciating music cross-culturally

    Get PDF
    It has long been debated which aspects of music perception are universal and which are developed only after exposure to a specific musical culture. Here we investigated whether "iconic" meaning in Western music, emerging from musical information resembling qualities of objects, or qualities of abstract concepts, can be recognized cross-culturally. To this end we acquired a profile of semantic associations (such as, for example, fight, river, etc.) to Western musical pieces from each participant, and then compared these profiles across cultural groups. Results show that the association profiles between Mafa, an ethnic group from northern Cameroon, and Western listeners are different, but that the Mafa have a consistent association profile, indicating that their associations are strongly informed by their enculturation. Results also show that listeners for whom Western music is novel, but whose association profile was more similar to the mean Western music association profile also had a greater appreciation of the Western music. The data thus show that, to some degree, iconic meaning transcends cultural boundaries, with a high inter-individual variance, probably because meaning in music is prone to be overwritten by individual and cultural experience
    corecore