375 research outputs found

    Complex SCN8A DNA-abnormalities in an individual with therapy resistant absence epilepsy

    Get PDF
    Background De novo SCN8A missense mutations have been identified as a rare dominant cause of epileptic encephalopathy. We described a person with epileptic encephalopathy associated with a mosaic deletion of the SCN8A gene. Methods Array comparative genome hybridization was used to identify chromosomal abnormalities. Next Generation Sequencing was used to screen for variants in known and candidate epilepsy genes. A single nucleotide polymorphism array was used to test whether the SCN8A variants were in cis or in trans. Results We identified a de novo mosaic deletion of exons 2–14 of SCN8A, and a rare maternally inherited missense variant on the other allele in a woman presenting with absence seizures, challenging behavior, intellectual disability and QRS-fragmentation on the ECG. We also found a variant in SCN5A. Conclusions The combination of a rare missense variant with a de novo mosaic deletion of a large part of the SCN8A gene suggests that other possible mechanisms for SCN8A mutations may cause epilepsy; loss of function, genetic modifiers and cellular interference may play a role. This case expands the phenotype associated with SCN8A mutations, with absence epilepsy and regression in language and memory skills

    Symptomatology of carbamazepine- and oxcarbazepine-induced hyponatremia in people with epilepsy

    Get PDF
    OBJECTIVE: To ascertain whether adverse effects experienced by people taking carbamazepine or oxcarbazepine could be attributed to carbamazepine- or oxcarbazepine-induced hyponatremia (COIH). METHODS: We performed an observational study, collecting data between 2017 and 2019 on serum sodium levels and adverse effects retrospectively in people with epilepsy while receiving treatment with either carbamazepine (CBZ) or oxcarbazepine (OXC). We defined hyponatremia as sodium level ≤134 mEq/L and severe hyponatremia as sodium level ≤128 mEq/L. Adverse effects experienced were compared between groups of individuals with and without hyponatremia. RESULTS: A total of 1370 people using CBZ or OXC were identified, of whom 410 had at least one episode of hyponatremia. We checked for symptoms related to the use of CBZ and OXC in 710 people (410 with and 300 without hyponatremia) and found relevant information in 688. Adverse effects occurred in 65% of people with hyponatremia compared to 21% with normal sodium levels (odds ratio [OR] 7.5, P ≤ .001) and in 83% of people with severe hyponatremia compared to 55% in those with mild hyponatremia (P ≤ .001). Significant predictors of adverse effects were the drug (OXC vs CBZ), and the number of concomitant anti-seizure medications. Dizziness (28% vs 6%), tiredness (22% vs 7%), instability (19% vs 3%), and diplopia (16% vs 4%) were reported more often in the hyponatremia group than in patients with normal levels. SIGNIFICANCE: People with COIH had a 7-fold increased risk of developing adverse effects during treatment. Clinicians should consider ascertainment of sodium levels in patients taking CBZ and OXC and act upon findings

    Association Study of TRPC4 as a Candidate Gene for Generalized Epilepsy with Photosensitivity

    No full text
    Photoparoxysmal response (PPR) is characterized by abnormal visual sensitivity of the brain to photic stimulation. Frequently associated with idiopathic generalized epilepsies (IGEs), it might be an endophenotype for cortical excitability. Transient receptor potential cation (TRPC) channels are involved in the generation of epileptiform discharges, and TRPC4 constitutes the main TRPC channel in the central nervous system. The present study investigated an association of PPR with sequence variations of the TRPC4 gene. Thirty-five single nucleotide polymorphisms (SNP) within TRPC4 were genotyped in 273 PPR probands and 599 population controls. Association analyses were performed for the broad PPR endophenotype (PPR types I-IV; n = 273), a narrow model of affectedness (PPR types III and IV; n = 214) and PPR associated with IGE (PPR/IGE; n = 106) for each SNP and for corresponding haplotypes. Association was found between the intron 5 SNP rs10507456 and PPR/IGE both for single markers (P = 0.005) and haplotype level (P = 0.01). Three additional SNPs (rs1535775, rs10161932 and rs7338118) within the same haplotype block were associated with PPR/IGE at P < 0.05 (uncorrected) as well as two more markers (rs10507457, rs7329459) located in intron 3. Again, the corresponding haplotype also showed association with PPR/IGE. Results were not significant following correction for multiple comparisons by permutation analysis for single markers and Bonferroni-Holm for haplotypes. No association was found between variants in TRPC4 and other phenotypes. Our results showed a trend toward association of TRPC4 variants and PPR/IGE. Further studies including larger samples of photosensitive probands are required to clarify the relevance of TRPC4 for PPR and IGE

    Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy

    Get PDF
    Objective Recently, de novo SCN8A missense mutations have been identified as a rare dominant cause of epileptic encephalopathies. Functional studies on the first described case demonstrated gain-of-function effects of the mutation. We describe a novel de novo mutation of SCN8A in a patient with epileptic encephalopathy, and functional characterization of the mutant protein. Design Whole exome sequencing was used to discover the variant. We generated a mutant cDNA, transfected HEK293 cells, and performed Western blotting to assess protein stability. To study channel functional properties, patch-clamp experiments were carried out in transfected neuronal ND7/23 cells. Results The proband exhibited seizure onset at 6 months of age, diffuse brain atrophy, and more profound developmental impairment than the original case. The mutation p.Arg233Gly in the voltage sensing transmembrane segment D1S4 was present in the proband and absent in both parents. This mutation results in a temperature-sensitive reduction in protein expression as well as reduced sodium current amplitude and density and a relative increased response to a slow ramp stimulus, though this did not result in an absolute increased current at physiological temperatures. Conclusion The new de novo SCN8A mutation is clearly deleterious, resulting in an unstable protein with reduced channel activity. This differs from the gain-of-function attributes of the first SCN8A mutation in epileptic encephalopathy, pointing to heterogeneity of mechanisms. Since Nav1.6 is expressed in both excitatory and inhibitory neurons, a differential effect of a loss-of-function of Nav1.6 Arg223Gly on inhibitory interneurons may underlie the epilepsy phenotype in this patient

    Assessing the genetic association between vitamin B6 metabolism and genetic generalized epilepsy

    Get PDF
    Altered vitamin B6 metabolism due to pathogenic variants in the gene PNPO causes early onset epileptic encephalopathy, which can be treated with high doses of vitamin B6. We recently reported that single nucleotide polymorphisms (SNPs) that influence PNPO expression in the brain are associated with genetic generalized epilepsy (GGE). However, it is not known whether any of these GGE-associated SNPs influence vitamin B6 metabolite levels. Such an influence would suggest that vitamin B6 could play a role in GGE therapy. Here, we performed genome-wide association studies (GWAS) to assess the influence of GGE associated genetic variants on measures of vitamin B6 metabolism in blood plasma in 2232 healthy individuals. We also asked if SNPs that influence vitamin B6 were associated with GGE in 3122 affected individuals and 20,244 controls. Our GWAS of vitamin B6 metabolites reproduced a previous association and found a novel genome-wide significant locus. The SNPs in these loci were not associated with GGE. We found that 84 GGE-associated SNPs influence expression levels of PNPO in the brain as well as in blood. However, these SNPs were not associated with vitamin B6 metabolism in plasma. By leveraging polygenic risk scoring (PRS), we found suggestive evidence of higher catabolism and lower levels of the active and transport forms of vitamin B6 in GGE, although these findings require further replication

    A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large European cohort

    Get PDF
    &lt;p&gt;&lt;b&gt;Objectives&lt;/b&gt; The aim of this study was to confirm the influence of TNFSF4 polymorphisms on systemic sclerosis (SSc) susceptibility and phenotypic features.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods&lt;/b&gt; A total of 8 European populations of Caucasian ancestry were included, comprising 3014 patients with SSc and 3125 healthy controls. Four genetic variants of TNFSF4 gene promoter (rs1234314, rs844644, rs844648 and rs12039904) were selected as genetic markers.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results&lt;/b&gt; A pooled analysis revealed the association of rs1234314 and rs12039904 polymorphisms with SSc (OR 1.15, 95% CI 1.02 to 1.31; OR 1.18, 95% CI 1.08 to 1.29, respectively). Significant association of the four tested variants with patients with limited cutaneous SSc (lcSSc) was revealed (rs1234314 OR 1.22, 95% CI 1.07 to 1.38; rs844644 OR 0.91, 95% CI 0.83 to 0.99; rs844648 OR 1.10, 95% CI 1.01 to 1.20 and rs12039904 OR 1.20, 95% CI 1.09 to 1.33). Association of rs1234314, rs844648 and rs12039904 minor alleles with patients positive for anti-centromere antibodies (ACA) remained significant (OR 1.23, 95% CI 1.10 to 1.37; OR 1.12, 95% CI 1.01 to 1.25; OR 1.22, 95% CI 1.07 to 1.38, respectively). Haplotype analysis confirmed a protective haplotype associated with SSc, lcSSc and ACA positive subgroups (OR 0.88, 95% CI 0.82 to 0.96; OR 0.88, 95% CI 0.80 to 0.96; OR 0.86, 95% CI 0.77 to 0.97, respectively) and revealed a new risk haplotype associated with the same groups of patients (OR 1.14, 95% CI 1.03 to 1.26; OR 1.20, 95% CI 1.08 to 1.35; OR 1.23, 95% CI 1.07 to 1.42, respectively).&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions&lt;/b&gt; The data confirm the influence of TNFSF4 polymorphisms in SSc genetic susceptibility, especially in subsets of patients positive for lcSSc and ACA.&lt;/p&gt

    Association of STAT4 with rheumatoid arthritis:A replication study in three European populations

    Get PDF
    OBJECTIVE: This study was undertaken to investigate the previously reported association of the STAT4 polymorphism rs7574865 with rheumatoid arthritis (RA) in 3 different European populations from Spain, Sweden, and The Netherlands, comprising a total of 2,072 patients and 2,474 controls. METHODS: Three different cohorts were included in the study: 923 RA patients and 1,296 healthy controls from Spain, 273 RA patients and 285 healthy controls from Sweden, and 876 RA patients and 893 healthy controls from The Netherlands. DNA from patients and controls was obtained from peripheral blood. Samples were genotyped for the STAT4 single-nucleotide polymorphism rs7574865 using a TaqMan 5'-allele discrimination assay. The chi-square test was performed to compare allele and genotype distributions. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. RESULTS: We observed a significantly increased frequency of the minor T allele in RA patients compared with healthy controls in the Spanish population (24.8% versus 20.8%; P = 0.001, OR 1.26 [95% CI 1.09-1.45]). This association was confirmed in both the Swedish population (P = 0.03, OR 1.35 [95% CI 1.03-1.77]) and the Dutch population (P = 0.03, OR 1.45 [95% CI 1.21-1.73]). The overall P value for all 3 populations was 9.79 x 10(-6) (OR 1.25 [95% CI 1.13-1.37]). No association between rs7574865 and the presence of rheumatoid factor or anti-cyclic citrullinated peptide autoantibodies was observed. A meta-analysis of all published STAT4 associations revealed an OR of 1.25 (95% CI 1.19-1.33) (P = 1 x 10(-5)). CONCLUSION: Our findings indicate an association between the STAT4 polymorphism rs7574865 and RA in 3 different populations, from Spain, Sweden, and The Netherlands, thereby confirming previous data

    Conditional meta-analysis stratifying on detailed HLA genotypes identifies a novel type 1 diabetes locus around TCF19 in the MHC

    Get PDF
    The human leukocyte antigen (HLA) class II genes HLA-DRB1, -DQA1 and -DQB1 are the strongest genetic factors for type 1 diabetes (T1D). Additional loci in the major histocompatibility complex (MHC) are difficult to identify due to the region’s high gene density and complex linkage disequilibrium (LD). To facilitate the association analysis, two novel algorithms were implemented in this study: one for phasing the multi-allelic HLA genotypes in trio families, and one for partitioning the HLA strata in conditional testing. Screening and replication were performed on two large and independent datasets: the Wellcome Trust Case–Control Consortium (WTCCC) dataset of 2,000 cases and 1,504 controls, and the T1D Genetics Consortium (T1DGC) dataset of 2,300 nuclear families. After imputation, the two datasets have 1,941 common SNPs in the MHC, of which 22 were successfully tested and replicated based on the statistical testing stratifying on the detailed DRB1 and DQB1 genotypes. Further conditional tests using the combined dataset confirmed eight novel SNP associations around 31.3 Mb on chromosome 6 (rs3094663, p = 1.66 × 10−11 and rs2523619, p = 2.77 × 10−10 conditional on the DR/DQ genotypes). A subsequent LD analysis established TCF19, POU5F1, CCHCR1 and PSORS1C1 as potential causal genes for the observed association

    Polygenic burden in focal and generalized epilepsies.

    Get PDF
    Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japanese-ancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64×10-15; Cleveland: P = 2.85×10-4; Finnish-ancestry Epi25: P = 1.80×10-4) or population controls (Epi25: P = 2.35×10-70; Cleveland: P = 1.43×10-7; Finnish-ancestry Epi25: P = 3.11×10-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99×10-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74×10-19; Cleveland: P = 1.69×10-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish European cohorts (Epi25: P = 2.60×10-15; Cleveland: P = 1.39×10-2). We conclude that common variant risk associated with epilepsy is significantly enriched in multiple cohorts of patients with epilepsy compared to controls-in particular for generalized epilepsy. As sample sizes and PRS accuracy continue to increase with further common variant discovery, PRS could complement established clinical biomarkers and augment genetic testing for patient classification, comorbidity research, and potentially targeted treatment
    corecore