95 research outputs found

    Ultra-short silicon-organic hybrid (SOH) modulator for bidirectional polarization-independent operation

    Get PDF
    We propose a bidirectional, polarization-independent, recirculating IQ-modulator scheme based on the silicon-organic hybrid (SOH) platform. We demonstrate the viability of the concept by using an SOH Mach-Zehnder modulator, operated at 10 GBd BPSK and 2ASK-2PSK

    Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration

    Get PDF
    Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration combines organic clectro-optic materials with silicon photonic and plasmonic waveguides, The concept enables fast and power-efficient modulators that support advanced modulation formats such as QPSK and 16QAM

    Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration

    Get PDF
    Silicon photonics offers tremendous potential for inexpensive high-yield photonic-electronic integration. Besides conventional dielectric waveguides, plasmonic structures can also be efficiently realized on the silicon photonic platform, reducing device footprint by more than an order of magnitude. However, nei-ther silicon nor metals exhibit appreciable second-order optical nonlinearities, thereby making efficient electro-optic modulators challenging to realize. These deficiencies can be overcome by the concepts of silicon-organic hybrid (SOH) and plasmonic-organic hybrid integration, which combine SOI waveguides and plasmonic nanostructures with organic electro-optic cladding materials

    MRD detection in multiple myeloma: comparison between MSKCC 10-color single-tube and EuroFlow 8-color 2-tube methods

    Get PDF
    [EN] In patients with multiple myeloma, obtaining posttreatment minimal residual disease (MRD) negativity is associated with longer progression-free survival and overall survival. Here, we compared the diagnostic performance of a single 10-color tube with that of a EuroFlow 8-color 2-tube panel for MRD testing. Bone marrow samples from 41 multiple myeloma patients were tested in parallel using the 2 approaches. Compared with the sum of the cells from the EuroFlow two 8-color tubes, the Memorial Sloan Kettering Cancer Center (MSKCC) single 10-color tube had a slight reduction in total cell number with a mean ratio of 0.85 (range, 0.57-1.46; P < .05), likely attributable to permeabilization of the cells. Percent of plasma cells showed a high degree of concordance (r2 = 0.97) as did normal plasma cells (r2 = 0.96), consistent with no selective plasma cell loss. Importantly, concordant measurement of residual disease burden was seen with abnormal plasma cells (r2 = 0.97). The overall concordance between the 2 tests was 98%. In 1 case, there was a discrepancy near the limit of detection of both tests in favor of the slightly greater theoretical sensitivity of the EuroFlow 8-color 2-tube panel (analytical sensitivity limit of MSKCC single 10-color tube: 6 cells in 1 million with at least 3 million cell acquisitions; EuroFlow 8-color 2-tube panel: 2 cells in 1 million with the recommended 10 million cell acquisitions)

    Integrated silicon-organic hybrid (SOH) frequency shifter

    Get PDF
    We demonstrate a waveguide-based frequency shifter on the silicon-organic hybrid (SOH) platform, enabling frequency shifts up to 10 GHz. Spurious side-modes are suppressed by more than 23 dB using temporal shaping of the drive signal

    Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40 Gbit/s

    Get PDF
    We report on high-speed plasmonic-organic hybrid Mach-Zehnder modulators comprising ultra-compact phase shifters with lengths as small as 19 my m. Choosing an optimum phase shifter length of 29 my m, we demonstrate 40 Gbit/s on-off keying (OOK) modulation with direct detection and a BER < 6 x 10 -4. Furthermore, we report on a 29 my m long binary-phase shift keying (BPSK) modulator and show that it operates error-free (BER < 1 x 10 -10) at data rates up to 40 Gbit/s and with an energy consumption of 70 fJ/bit

    Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology

    Get PDF
    We demonstrate for the first time a waveguide-based frequency shifter on the silicon photonic platform using single-sideband modulation. The device is based on silicon-organic hybrid (SOH) electro-optic modulators, which combine conventional silicon-on-insulator waveguides with highly efficient electro-optic cladding materials. Using small-signal modulation, we demonstrate frequency shifts of up to 10 GHz. We further show large-signal modulation with optimized waveforms, enabling a conversion efficiency of -5.8 dB while suppressing spurious side-modes by more than 23dB. In contrast to conventional acousto-optic frequency shifters, our devices lend themselves to large-scale integration on silicon substrates, while enabling frequency shifts that are several orders of magnitude larger than those demonstrated with all-silicon serrodyne devices
    corecore