10 research outputs found

    Electric field gradients in MgB2_2 synthesized at high pressure: 111^111Cd TDPAC study and ab initio calculation

    Full text link
    We report the high-pressure synthesis of novel superconductor MgB2_2 and some related compounds. The superconducting transition temperature of our samples of MgB2_2 is equal to 36.6 K. The MgB2_2 lattice parameters determined via X-ray diffraction are in excellent agreement with results of our ab initio calculations. The time-differential perturbed angular correlation (TDPAC) experiments demonstrate a small increase in quadrupole frequency of 111^111Cd probe with decreasing temperature from 293 to 4.2 K. The electric field gradient (EFG) at the B site calculated from first principles is in fair agreement with EFG obtained from 11^11B NMR spectra of MgB2_2 reported in the literature. It is also very close to EFG found in our 111^111Cd TDPAC measurements, which suggests that the 111^111Cd probe substitutes for boron in the MgB2_2 lattice.Comment: 10 pages, 3 figure

    Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors

    Full text link
    We have constructed a GEANT4-based detailed software model of photon transport in plastic scintillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutrinoless double beta decay. We compare our simulations to measurements using conversion electrons from a calibration source of 207Bi\rm ^{207}Bi and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account. In this article, we briefly describe our modeling approach and results of our studies.Comment: 16 pages, 10 figure

    Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils

    Get PDF
    The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in 208^{208}Tl and 214^{214}Bi for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 m2m^2 of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in 208^{208}Tl. After more than one year of background measurement, a surface activity of the scintillators of A\mathcal{A}(208^{208}Tl) == 1.5 μ\muBq/m2^2 is reported here. Given this level of background, a larger BiPo detector having 12 m2^2 of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of A\mathcal{A}(208^{208}Tl) << 2 μ\muBq/kg (90% C.L.) with a six month measurement.Comment: 24 pages, submitted to N.I.M.

    The Majorana Neutrinoless Double-Beta Decay Experiment

    Full text link
    The proposed Majorana double-beta decay experiment is based on an array of segmented intrinsic Ge detectors with a total mass of 500 kg of Ge isotopically enriched to 86% in 76Ge. A discussion is given of background reduction by: material selection, detector segmentation, pulse shape analysis, and electro-formation of copper parts and granularity. Predictions of the experimental sensitivity are given. For an experimental running time of 10 years over the construction and operation of Majorana, a half-life sensitivity of ~4x10^27 y (neutrinoless) is predicted. This corresponds to an effective Majorana mass of the electron neutrino of ~0.03-0.04 eV, according to recent QRPA and RQRPA matrix element calculations.Comment: 10 pages, 7 figure
    corecore