6 research outputs found
Innovative Methods and Applications in Mucoadhesion Research.
The present review is aimed at elucidating relatively new aspects of mucoadhesion/mucus interaction and related phenomena that emerged from a Mucoadhesion workshop held in Munster on 2-3 September 2015 as a satellite event of the ICCC 13th-EUCHIS 12th. After a brief outline of the new issues, the focus is on mucus description, purification, and mucus/mucin characterization, all steps that are pivotal to the understanding of mucus related phenomena and the choice of the correct mucosal model for in vitro and ex vivo experiments, alternative bio/mucomimetic materials are also presented. Then a selection of preparative techniques and testing methods are described (at molecular as well as micro and macroscale) that may support the pharmaceutical development of mucus interactive systems and assist formulators in the scale-up and industrialization steps. Recent applications of mucoadhesive systems (including medical devices) intended for different routes of administration (oral, gastrointestinal, vaginal, nasal, ocular, and intravesical) and for the treatment of difficult to treat pathologies or the alleviation of symptoms are described
PFG-NMR diffusometry: A tool for investigating the structure and dynamics of noncommercial purified pig gastric mucin in a wide range of concentrations
PFG-NMR diffusometry: A tool for investigating the structure and dynamics of noncommercial purified pig gastric mucin in a wide range of concentrations
For the first time, Pulsed Field Gradient-Nuclear Magnetic Resonance, a powerful noninvasive tool for studying the dynamics and structure of complex-gels, has been used to measure diffusion of probe molecules in aqueous solutions/gels of noncommercial purified pig gastric mucin (PGM), in a concentration range up to 5 wt%. Complementary data were obtained from rheology measurements. The combination of techniques revealed a strong pH dependency of the structure of the PGM samples while changes in concentration, ionic strength, and temperature appeared to induce less pronounced alterations. Viscosity was found to vary in a nonmonotonous way with pH, with the more viscous solutions found at intermediate pH. We propose that this finding is due to a reduced charge density at lower pH, which is expected to continuously increase the relative importance of hydrophobic associations. The results suggest a loose network of expanded fully charged PGM molecules woth considerable mobility at neutral pH (pH 7.4). At intermediate pH (pH 4), a three-dimensional expanded network is favored. At pH 1, the charge density is low and microphase seperation occurs since hydrophobic associations prevail. This leads to the formation of clusters concentrated in PGM molecules seperated by regions depleted in PGM. The results obtained increase our knowledge about the gastric mucosal layer, which in vivo contains mucin in the same concentration range as that of the samples investigated here. (c) 2007 Wiley Periodicals, Inc
Alterations in Mucus Barrier Function and Matrix Structure Induced by Guluronate Oligomers
Biophysical Analysis of the Molecular Interactions between Polysaccharides and Mucin
Mucoadhesive materials adhere persistently to mucosal surfaces. A mucoadhesive delivery system could therefore facilitate the controlled release of drugs and optimize their bioavailability in mucosal tissues. Polysaccharides are the most versatile class of natural polymers for transmucosal drug delivery. We used microviscosimetry to explore the mucoadhesion of a library of polysaccharide families with diverse structural characteristics as a first step toward the rational design of mucoadhesive polysaccharide-based nanoformulations. Here we show that the magnitude of deviation between the viscosity of mixed polysaccharide–mucin solutions and the corresponding individual stock solutions can indicate underlying molecular interactions. We found that nonlinear monotonic curves predicted a correlation between the magnitude of interaction and the ability of polysaccharide coils to contract in the presence of salt (i.e., chain flexibility). Charge-neutral polysaccharides such as dextran and Streptococcus thermophilus exopolysaccharide did not interact with mucin. Synchrotron small-angle X-ray scattering (SAXS) data supported the previously described structural features of mucin. Furthermore, high-q scattering data (i.e., sensitive to smaller scales) revealed that when mucin is in dilute solution (presumably in an extended conformation) in the presence of low-Mw alginate, its structure resembles that observed at higher concentrations in the absence of alginate. This effect was less pronounced in the case of high-Mw alginate, but the latter influenced the bulk properties of mucin–alginate mixtures (e.g., hydrodynamic radius and relative viscosity) more prominently than its low-Mw counterpart
