2,036 research outputs found

    Prognostic factors associated with the survival of oral and pharyngeal carcinoma in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Taiwan, a distinct ethnic group variation in incidence and mortality rates has been suggested for most carcinomas. Our aim is to identify the role of prognostic factors associated with the survival of oral and pharyngeal carcinoma in Taiwan.</p> <p>Methods</p> <p>Taiwan Cancer Registry records of 9039 subjects diagnosed with oral and pharyngeal carcinoma were analyzed. The population was divided into three ethnic groups by residence, which were Taiwanese aborigines, Hakka and Hokkien communities. Five-year survival rates were estimated by Kaplan-Meier methods. Ethnic curves differed significantly by log-rank test; therefore separate models for Taiwanese aborigines, Hakka and Hokkien were carried out. The Cox multivariate proportional hazards model was used to examine the role of prognostic factors on ethnic survival.</p> <p>Results</p> <p>The five-year survival rates of oral and pharyngeal carcinoma were significantly poorer for Hokkien community (53.9%) and Taiwanese aborigines community (58.1%) compared with Hakka community (60.5%). The adjusted hazard ratio of Taiwanese aborigines versus Hakka was 1.07 (95%CI, 0.86–1.33) for oral and pharyngeal carcinoma mortality, and 1.16 (95%CI, 1.01–1.33) for Hokkien versus Hakka. Males had significantly poor prognosis than females. Subjects with tongue and/or mouth carcinoma presented the worst prognosis, whereas lip carcinoma had the best prognosis. Subjects with verrucous carcinoma had better survival than squamous cell carcinoma. Prognosis was the worst in elderly subjects, and subjects who underwent surgery had the highest survival rate.</p> <p>Conclusion</p> <p>Our study presented that predictive variables in oral and pharyngeal carcinoma survival have been: ethnic groups, period of diagnosis, gender, diagnostic age, anatomic site, morphologic type, and therapy.</p

    Important prognostic factors for the long-term survival of lung cancer subjects in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study used a large-scale cancer database in determination of prognostic factors for the survival of lung cancer subjects in Taiwan.</p> <p>Methods</p> <p>Total of 24,910 subjects diagnosed with lung cancer was analysed. Survival estimates by Kaplan-Meier methods. Cox proportional-hazards model estimated the death risk (hazard ratio (HR)) for various prognostic factors.</p> <p>Results</p> <p>The prognostic indicators associated with a higher risk of lung cancer deaths are male gender (males versus females; HR = 1.07, 95% confidence intervals (CI): 1.03–1.11), males diagnosed in later periods (shown in 1991–1994 versus 1987–1990; HR = 1.13), older age at diagnosis, large cell carcinoma (LCC)/small cell carcinoma (SCC), and supportive care therapy over chemotherapy. The overall 5-year survival rate for lung cancer death was significantly poorer for males (21.3%) than females (23.6%). Subjects with squamous cell carcinoma (SQCC) and treatment by surgical resection alone had better prognosis. We find surgical resections to markedly increase 5-year survival rate from LCC, decreased risk of death from LCC, and no improved survival from SCC.</p> <p>Conclusion</p> <p>Gender and clinical characteristics (i.e. diagnostic period, diagnostic age, histological type and treatment modality) play important roles in determining lung cancer survival.</p

    Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania

    Get PDF
    It has recently been shown that ancestors of New Guineans and Bougainville Islanders have inherited a proportion of their ancestry from Denisovans, an archaic hominin group from Siberia. However, only a sparse sampling of populations from Southeast Asia and Oceania were analyzed. Here, we quantify Denisova admixture in 33 additional populations from Asia and Oceania. Aboriginal Australians, Near Oceanians, Polynesians, Fijians, east Indonesians, and Mamanwa (a ‘‘Negrito’’ group from the Philippines) have all inherited genetic material from Denisovans, but mainland East Asians, western Indonesians, Jehai (a Negrito group from Malaysia), and Onge (a Negrito group from the Andaman Islands) have not. These results indicate that Denisova gene flow occurred into the common ancestors of New Guineans, Australians, and Mamanwa but not into the ancestors of the Jehai and Onge and suggest that relatives of present-day East Asians were not in Southeast Asia when the Denisova gene flow occurred. Our finding that descendants of the earliest inhabitants of Southeast Asia do not all harbor Denisova admixture is inconsistent with a history in which the Denisova interbreeding occurred in mainland Asia and then spread over Southeast Asia, leading to all its earliest modern human inhabitants. Instead, the data can be most parsimoniously explained if the Denisova gene flow occurred in Southeast Asia itself. Thus, archaic Denisovans must have lived over an extraordinarily broad geographic and ecological range, from Siberia to tropical Asia

    Tapping into non-English-language science for the conservation of global biodiversity.

    Get PDF
    The widely held assumption that any important scientific information would be available in English underlies the underuse of non-English-language science across disciplines. However, non-English-language science is expected to bring unique and valuable scientific information, especially in disciplines where the evidence is patchy, and for emergent issues where synthesising available evidence is an urgent challenge. Yet such contribution of non-English-language science to scientific communities and the application of science is rarely quantified. Here, we show that non-English-language studies provide crucial evidence for informing global biodiversity conservation. By screening 419,679 peer-reviewed papers in 16 languages, we identified 1,234 non-English-language studies providing evidence on the effectiveness of biodiversity conservation interventions, compared to 4,412 English-language studies identified with the same criteria. Relevant non-English-language studies are being published at an increasing rate in 6 out of the 12 languages where there were a sufficient number of relevant studies. Incorporating non-English-language studies can expand the geographical coverage (i.e., the number of 2° × 2° grid cells with relevant studies) of English-language evidence by 12% to 25%, especially in biodiverse regions, and taxonomic coverage (i.e., the number of species covered by the relevant studies) by 5% to 32%, although they do tend to be based on less robust study designs. Our results show that synthesising non-English-language studies is key to overcoming the widespread lack of local, context-dependent evidence and facilitating evidence-based conservation globally. We urge wider disciplines to rigorously reassess the untapped potential of non-English-language science in informing decisions to address other global challenges. Please see the Supporting information files for Alternative Language Abstracts

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore