42 research outputs found

    Approach to the semiconductor cavity QED in high-Q regimes with q-deformed boson

    Full text link
    The high density Frenkel exciton which interacts with a single mode microcavity field is dealed with in the framework of the q-deformed boson. It is shown that the q-defomation of bosonic commutation relations is satisfied naturally by the exciton operators when the low density limit is deviated. An analytical expression of the physical spectrum for the exciton is given by using of the dressed states of the cavity field and the exciton. We also give the numerical study and compare the theoretical results with the experimental resultsComment: 6 pages, 2 figure

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism

    Magnetic fabric characteristics of bioturbated wave-produced grain orientation in the Bridport-Yeovil Sands (Lower Jurassic) of Southern England

    No full text
    There is little visible primary hydrodynamic lamination preserved in the Bridport-Yeovil Sands as a result of intense bioturbation. Where lamination is present, it exhibits wave-produced characteristics, although current ripple lamination is also found. The grain orientation of a variety of bioturbated and non-bioturbated fine-grained sandstones has been determined by measuring the magnetic susceptibility anisotropy. The magnetic fabric is of a primary style and preserves two lineation directions approximately 90° apart in azimuth. These lineation directions are interpreted as the result of grain long-axis orientations produced by wave and current processes. The magnetic fabric is dominantly carried by a small proportion of paramagnetic minerals, thought to be largely detrital chlorite and micas. This magnetic fabric has been acquired by depositional alignment of the detrital phyllosilicates and by reorientation of the phyllosilicates during the early stages of compaction. The magnetic fabric of the intensely bioturbated sandstone is not significantly different in magnitude characteristics or in the preservation of lineation directions from that of the non-bioturbated sandstone
    corecore