763 research outputs found

    Effect of rounded corners on the magnetic properties of pyramidal-shaped shell structures

    Get PDF
    In recent years, the advance of novel chemical growth techniques has led to the fabrication of complex, three-dimensional magnetic nanostructures. The corners and edges of such realistic geometries are generally not sharp but rounded. In a previous article we have argued that high demagnetization fields in the vicinity of sharp edges lead to the formation of an asymmetric vortex state in pyramidal-shaped magnetic shell structures. The asymmetric vortex state is potentially interesting with respect to future magnetic memory devices. In this work a micromagnetic model is used to investigate the effect of rounded corners and edges on the magnetic reversal process within these pyramidal-shaped magnetic shell structures. In particular, we explore the degree of rounding, which has to be introduced in order to suppress the asymmetric vortex state. Another emphasis is placed on the magnetic reversal of (quasi-)homogeneous states within these structures. We demonstrate that the rounding of corners significantly reduces the coercivity. This complies with former studies on cuboidal structures, which suggest the important effect of corners on the magnetic reversal of homogeneous magnetic states. The present study uses a finite-element discretization for the numerical solution of the micromagnetic equations, which provides flexibility with respect to the modeling of complex shapes. In particular, this method is very accurate with respect to structures with a smooth surface

    Consumption of Methane and CO_2 by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic Black Sea

    Get PDF
    The deep anoxic shelf of the northwestern Black Sea has numerous gas seeps, which are populated by methanotrophic microbial mats in and above the seafloor. Above the seafloor, the mats can form tall reef-like structures composed of porous carbonate and microbial biomass. Here, we investigated the spatial patterns of CH_4 and CO_2 assimilation in relation to the distribution of ANME groups and their associated bacteria in mat samples obtained from the surface of a large reef structure. A combination of different methods, including radiotracer incubation, beta microimaging, secondary ion mass spectrometry, and catalyzed reporter deposition fluorescence in situ hybridization, was applied to sections of mat obtained from the large reef structure to locate hot spots of methanotrophy and to identify the responsible microbial consortia. In addition, CO_2 reduction to methane was investigated in the presence or absence of methane, sulfate, and hydrogen. The mat had an average δ^(13)C carbon isotopic signature of −67.1‰, indicating that methane was the main carbon source. Regions dominated by ANME-1 had isotope signatures that were significantly heavier (−66.4‰ ± 3.9 ‰ [mean ± standard deviation; n = 7]) than those of the more central regions dominated by ANME-2 (−72.9‰ ± 2.2 ‰; n = 7). Incorporation of ^(14)C from radiolabeled CH_4 or CO_2 revealed one hot spot for methanotrophy and CO2 fixation close to the surface of the mat and a low assimilation efficiency (1 to 2% of methane oxidized). Replicate incubations of the mat with ^(14)CH_4 or ^(14)CO_2 revealed that there was interconversion of CH_4 and CO_2. The level of CO_2 reduction was about 10% of the level of anaerobic oxidation of methane. However, since considerable methane formation was observed only in the presence of methane and sulfate, the process appeared to be a rereaction of anaerobic oxidation of methane rather than net methanogenesis

    Cavity optoelectromechanical regenerative amplification

    Get PDF
    Cavity optoelectromechanical regenerative amplification is demonstrated. An optical cavity enhances mechanical transduction, allowing sensitive measurement even for heavy oscillators. A 27.3 MHz mechanical mode of a microtoroid was linewidth narrowed to 6.6\pm1.4 mHz, 30 times smaller than previously achieved with radiation pressure driving in such a system. These results may have applications in areas such as ultrasensitive optomechanical mass spectroscopy

    The Pass-Through of RIN Prices to Wholesale and Retail Fuels under the Renewable Fuel Standard

    Get PDF
    The US Renewable Fuel Standard (RFS) requires blending increasing quantities of biofuels into the surface vehicle fuel supply. The RFS requirements are met through a system of tradable permits called Renewable (fuel) Identification Numbers, or RINs. We exploit the large fluctuations in RIN prices during 2013–15 to estimate the pass-through of RIN prices to US wholesale and retail fuel prices. We control for common factors by examining spreads of physically similar fuels with different RIN obligations. Pooling six different wholesale petroleum fuel spreads, we estimate a pooled long-run or equilibrium pass-through coefficient of 1.00 with a standard error of 0.11. This pass-through occurs within two business days. The only fuel for which we find economically and statistically significant failure of pass-through is retail E85, which contains up to 83% ethanol; the pass-through of RIN prices to the retail E85–E10 spread is precisely estimated to be close to zero. Keywords: E85; Energy prices; Fuels markers; RBOB; Retail fuel spreads; Wholesale fuel spread

    Model of a microtoroidal magnetometer

    Get PDF
    We present a model of a cavity optomechanical magnetic field sensor based on a microtoroidal resonator. The magnetic field induced expansion of a magnetostrictive material is transduced onto the physical structure of a highly compliant optical microresonator. The resulting motion is read out optically with ultra-high sensitivity. According to our theoretical model sensitivities of up to 750 fT/√ Hz may be possible. The simultaneous presence of high-quality mechanical and optical resonances in microtoroids greatly enhances both the response to the magnetic field and the measurement sensitivity

    Microbial Community Response to Simulated Petroleum Seepage in Caspian Sea Sediments

    Get PDF
    Anaerobic microbial hydrocarbon degradation is a major biogeochemical process at marine seeps. Here we studied the response of the microbial community to petroleum seepage simulated for 190 days in a sediment core from the Caspian Sea using a sediment-oil-flow-through (SOFT) system. Untreated (without simulated petroleum seepage) and SOFT sediment microbial communities shared 43% bacterial genuslevel 16S rRNA-based operational taxonomic units (OTU0:945) but shared only 23% archaeal OTU0:945. The community differed significantly between sediment layers. The detection of fourfold higher deltaproteobacterial cell numbers in SOFT than in untreated sediment at depths characterized by highest sulfate reduction rates and strongest decrease of gaseous and mid-chain alkane concentrations indicated a specific response of hydrocarbon-degrading Deltaproteobacteria. Based on an increase in specific CARD-FISH cell numbers, we suggest the following groups of sulfate-reducing bacteria to be likely responsible for the observed decrease in aliphatic and aromatic hydrocarbon concentration in SOFT sediments: clade SCA1 for propane and butane degradation, clade LCA2 for mid- to long-chain alkane degradation, clade Cyhx for cycloalkanes, pentane and hexane degradation, and relatives of Desulfobacula for toluene degradation. Highest numbers of archaea of the genus Methanosarcina were found in the methanogenic zone of the SOFT core where we detected preferential degradation of long-chain hydrocarbons. Sequencing of masD, a marker gene for alkane degradation encoding (1-methylalkyl)succinate synthase, revealed a low diversity in SOFT sediment with two abundant species-level MasD OTU0:96

    Expression of ECM proteins fibulin-1 and -2 in acute and chronic liver disease and in cultured rat liver cells

    Get PDF
    Fibulin-2 has previously been considered as a marker to distinguish rat liver myofibroblasts from hepatic stellate cells. The function of other fibulins in acute or chronic liver damage has not yet been investigated. The aim of this study has been to evaluate the expression of fibulin-1 and -2 in models of rat liver injury and in human liver cirrhosis. Their cellular sources have also been investigated. In normal rat liver, fibulin-1 and -2 were both mainly present in the portal field. Fibulin-1-coding transcripts were detected in total RNA of normal rat liver, whereas fibulin-2 mRNA was only detected by sensitive, real-time quantitative polymerase chain reaction. In acute liver injury, the expression of fibulin-1 was significantly increased (17.23-fold after 48 h), whereas that of fibulin-2 was not modified. The expression of both fibulin-1 and -2 was increased in experimental rat liver cirrhosis (19.16- and 26.47-fold, respectively). At the cellular level, fibulin-1 was detectable in hepatocytes, “activated” hepatic stellate cells, and liver myofibroblasts (2.71-, 122.65-, and 469.48-fold over the expression in normal rat liver), whereas fibulin-2 was restricted to liver myofibroblasts and was regulated by transforming growth factor beta-1 (TGF-β1) in 2-day-old hepatocyte cultures and in liver myofibroblasts. Thus, fibulin-1 and -2 respond differentially to single and repeated damaging noxae, and their expression is differently present in liver cells. Expression of the fibulin-2 gene is regulated by TGF-β1 in liver myofibroblasts

    Sagnac Interferometer Enhanced Particle Tracking in Optical Tweezers

    Full text link
    A setup is proposed to enhance tracking of very small particles, by using optical tweezers embedded within a Sagnac interferometer. The achievable signal-to-noise ratio is shown to be enhanced over that for a standard optical tweezers setup. The enhancement factor increases asymptotically as the interferometer visibility approaches 100%, but is capped at a maximum given by the ratio of the trapping field intensity to the detector saturation threshold. For an achievable visibility of 99%, the signal-to-noise ratio is enhanced by a factor of 200, and the minimum trackable particle size is 2.4 times smaller than without the interferometer
    corecore