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ABSTRACT

We present a model of a cavity optomechanical magnetic field sensor based on a microtoroidal resonator. The
magnetic field induced expansion of a magnetostrictive material is transduced onto the physical structure of a
highly compliant optical microresonator. The resulting motion is read out optically with ultra-high sensitivity.
According to our theoretical model sensitivities of up to 750 fT/

√
Hz may be possible. The simultaneous

presence of high-quality mechanical and optical resonances in microtoroids greatly enhances both the response
to the magnetic field and the measurement sensitivity.
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1. INTRODUCTION

Ultra-sensitive magnetometers are indispensable for a wide range of practical applications.1 The field is dom-
inated by superconducting quantum interference devices (SQUIDs),2which achieve sensitivities of up to one
fT/

√
Hz, allowing the detection of single magnetic flux quanta.1 However, SQUIDs suffer form major draw-

backs: They require cryogenic cooling and they are not suitable for miniaturization ande integration on a chip
scale.3

Thus, creating ultra-sensitive magnetic field sensors capable of operating at room temperature is an important
research goal. On a macroscale, magnetic field measurements with record sensitivities of 160 aT/

√
Hz at room

temperature can be achieved with spin exchange relaxation-free (SERF) magnetometers.4 SERF magnetometers
measure magnetic fields by monitoring a high density vapor of alkali metal atoms precessing in a near-zero
magnetic field.5 SERFs have been used successfully in various applications including medicine and geology, but
also have significant disadvantages. Firstly, they are relatively large with dimensions at least in the mm-range
even when using micro-fabricated gas cells.6 Secondly, they have a low dynamic range and already at geomagnetic
fields (≈ 50 μT) are adversely affected by the non-linear Zeeman effect2, 7

Currently there is a large interest in Nitrogen-Vacancy(NV) center based magnetometers, as they overcome
the size constraints of SERFs and SQUIDs, being nm to μm size. These devices combine sensitivities reaching
4 nT/

√
Hz with room temperature operation, optical readout and small size,8 and are predicted theoretically to

reach the fT/
√
Hz range.9 This has enabled magnetic field imaging,9 and magnetic resonance imaging10 at the

nanoscale with a single NV center. Three-dimensional magnetic field imaging was demonstrated using a CCD
camera to read out an ensemble of NV centers in a macroscopic crystal.11 However, the wide application of NV
centers is hampered by fabrication issues, intricate read-out schemes,12 misalignment of the magnetic field that
prepares the atomic states,11 and bulky optics required for signal detection.

Magnetostrictive materials provide a possible alternative for miniaturization and integration of room temper-
ature magnetometers. These materials deform under an applied magnetic field, and combined with a sensitive
position sensor, provide the basis for a robust and highly sensitive magnetic field sensing technology that does
not require cooling, or rely on intricate read-out schemes, and has the potential for miniaturization.

Already in 1989 a fiber interferometer based magnetometer using the magnetostrictive material Metglas
achieved a sensitivity of 70 fT/

√
Hz at a frequency of 34 kHz. Moreover, the sensor’s response to magnetic

fields was linear for flux densities up to mT.13 The magnetostrictive material had a size of several centimeters.
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Today the most commonly used magnetostrictive material is Terfenol-D as, at room temperature, it produces
the largest saturation strain on application of a magnetic field of all known materials.14

Magnetometers based on Terfenol-D have already been demonstrated by several groups: By creating com-
posite materials combining Terfenol-D layers with piezoelectric materials a sensitivity of 10 pT/

√
Hz was demon-

strated, and the composite material had a size on the cm-scale.15 In another experiment optical fiber based
Bragg gratings were coated with Terfenol-D. A spectrometer was used to measure the resonance frequency shift
of the Bragg grating that was deformed by the expanding Terfenol-D. The authors reported a sensitivity of 0.3
mT.16 In both applications the sensitivity was ultimately limited by the methods that detected the Terfenol-D
induced deformations.

However, the described sensors have dimensions on the order of centimeters and are not suitable for integration
on a chip-scale or for fabrication in a 2-dimensional array. Smaller sensors based on Terfenol-D have been
demonstrated, and by detecting the deformation of commercial AFM cantilevers that were coated with Terfenol-
D, a magnetic field sensitivity of 1 μT was achieved.17 This shows the ability of Terfenol-D based sensors to
be realized on the microscale, however, this particular sensor suffers the major drawback that the achieved
sensitivity is insufficient for many applications. Also integration on a chip and production of an array of sensors
would be technically very demanding.

In Ref.18 a first proof of principal demonstration of an optomechanical magnetometer was presented, achieving
an experimentally measured sensitivity of 400 nT/

√
Hz. However, theoretical modeling showed that sensitivities

of up to 750 fT/
√
Hz may be possible with an optimized microtoroidal sensor. In this letter we present in detail

the derivation of the predicted sensitivity using the formal framework presented in Ref.19 and based on a finite
element model.

2. MODEL OF A MICROTOROIDAL MAGNETIC FIELD SENSOR

2.1 Noise sources

The noise spectrum Snoise
ΩΩ for a cavity optomechanical magnetic field sensor is given by19

Snoise
ΩΩ (ω) = Stherm,q

ΩΩ + Smeas
ΩΩ = g2 |χq(ω)|2 [2mqkBTΓq] + Smeas

ΩΩ (ω), (1)

where g is the optomechanical coupling constant,20 χq(ω) is the mechanical susceptibility of the qth eigenmode

of the oscillator, mq its effective mass and Γq its mechanical dissipation rate. The first term Stherm,q
ΩΩ corresponds

to thermal excitation of this eigenmode and the second term Smeas
ΩΩ accounts for shot and frequency noise on the

laser field, and other noise sources such as electronic noise in the detectors used to measure the optical field. We
neglect fluctuations of the radiation pressure force δFrp,

19 as they cause only a minor perturbation when using
optical powers typical for measurements in a toroidal WGM.

Ultimately, the detection of any signal imprinted on the optical field is limited by laser shot noise, which

is spectrally flat to a good approximation.21 We assume a shot noise background of (Smeas
ΩΩ )

1/2
= 20 Hz/

√
Hz,

consistent with experiments.22

At the length- and mass-scales of microtoroids, thermal excitation of mechanical modes at room temperature
becomes a significant noise source, as a simple example calculation shows: a typical microtoroid with a major
radius of R = 30 μm and an optical resonance frequency at Ωc = 306 THz (corresponding to λc = 980 nm)
exhibits an optomechanical coupling of g = Ωc/R = 6.41 · 1019 Hz/m.20 For a typical radial breathing mode
with effective mass mq = 10 ng, mechanical quality factor Qq = 104 and resonance frequency ωq = 2π · 30 MHz,

the displacement noise Stherm,q
ΩΩ on resonance at room temperature T = 300 K is calculated as

(
Stherm,q
ΩΩ

)1/2

= g · χq(ωq) · Ftherm =
gQq

mqω2
q

·
√
2kBTmqωqQ

−1
q = 71

kHz√
Hz

� 20
Hz√
Hz

, (2)

where we have written the mechanical susceptibility in the form χq = [mq(ω
2
q −ω2− iΓqω)]

−1. Thus the thermal
excitation of the mode can easily be measured at room temperature and dominates the noise floor around its
resonance frequency. However, the desired signal is enhanced as the mechanical susceptibility χ(ω), proportional
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to the thermal noise, so that at frequencies around a mechanical mode, the ratio of signal to Brownian noise
remains constant, but all other noise sources are suppressed proportional to χ(ω). This leads to a higher overall
signal-to-noise ratio and thus a higher sensitivity around mechanical eigenmodes.

In addition to the fundamental shot noise, Smeas
ΩΩ can also comprise other noise sources: thermorefractive

noise in a microtoroid stems from localized thermal fluctuations of the refractive index of glass. It increases with
lower frequencies and exceeds the laser shot noise in microtoroids below 30 MHz,22 therefore constituting the
dominant noise source for measurements at lower frequencies. Its spectral shape has been theoretically modeled
in Ref.23 In principle it can be minimized by controlling material properties.

Electronic noise is generally not an issue in measurements of the transduced signal, as, using suitable detection
electronics, it remains several decibel below the laser shot noise.22

At frequencies below one kilohertz, mechanical noise sources such as vibrations in the taper-toroid coupling
or in the coupling of a laser beam from free space into fiber have to be considered. These noise sources can
however be eliminated by carefully designing the measurement setup.

2.2 Model geometry and FEM simulation

We model a toroidal WGM-resonator which is made of a central Terfenol-D cylinder (radius R̃ = 24μm, height
H = 5μm) with a surrounding silica torus (major radius R = 30μm, minor radius R′ = 3μm) (see Fig. 2). For
the mechanical resonator, this yields a total mass of

M = ρTerfenol · πR̃2H + ρSilica · 2πRR′2 = 88ng, (3)

where we have used the densities of Terfenol and silica, ρTerfenol = 9.25 g/cm3,14 and ρSilica = 2.65 g/cm3,24

respectively. The torus is made of silica and constitutes the optical resonator (see Fig. 2). We assume that the
system vibrates in a single mechanical radial breathing mode with Qq = 1000.20 A finite element simulation
(COMSOL) yielded the eigenfrequency ωq = 2π · 5.6 MHz and effective mass mq = 16 ng (see Fig. 1). Applying
the theory developed in Ref.19 to this model, we can calculate the minimum detectable magnetic field as a
function of frequency

| �B|min(ω)√
RBW

=
1

cact

√
2kBTMΓq +

M

mq

Smeas
ΩΩ

g2|χq(ω)|2 (4)

=
1

cact

√
2kBTMΓq + g−1Smeas

ΩΩ Mmq · (ω2
q − ω2 − iΓqω), (5)

where RBW is the resolution bandwidth of the measurement (i.e. the inverse of the measurement time). The
magnetic actuation constant cact determines the strength of the coupling between applied magnetic field and
effective force on the mechanical oscillator.

It can be seen that, in the usual limit where the radiation pressure force due to photon number fluctuations
is negligible, a high mechanical quality factor Qq = Γq/ωq is always advantageous for precise sensing, reducing
the thermal noise, and also, on resonance, the effect of the measurement noise through its contribution to
χq(ω) = [mq(ω

2
q − ω2 − iΓqω)]

−1.

In this limit, a low effective mass is beneficial for sensing, as its total effect will be a suppression of the mea-
surement noise. Also improving the optical quality factor of the cavity is of advantage, as common measurement
techniques convert a frequency shift signal to an amplitude- or phase-signal, which is enhanced as Qopt relative
to the measurement noise.

In the following sections, we calculate the magnetic actuation constant cact of the model and then discuss its
predicted performance.
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2.3 Magnetic actuation constant cact

The following paragraphs are dedicated to the calculation of the magnetic actuation constant cact via finite
element modeling. It is given by the spatial overlap of the force distribution �fMS created by the magnetostrictive
medium and the modeshape function �Ψq(�r).

19

cact =
1

B

∫

V

�fMS(�r, t, B) · �Ψq(�r)d
3r, (6)

where B is the magnitude of the applied magnetic field. We approximate the displacement amplitude for a
radial breathing mode as proportional to the radial coordinate, �Ψq(�r) ∝ �r. This is a good approximation for this
particular system, as confirmed by finite element simulation (see Fig. 1). In a straightforward calculation, the

normalization condition
∫
V

∣∣∣�Ψq(�r)
∣∣∣
2

d3r = V finally yields

�Ψq(�r) =

√
2

R
�r. (7)

The displacement �Ψq(�r) is radially symmetric and proportional to the distance from the center of the oscillator.
In order to evaluate the integral on the right hand side of Eq. (6), we still need to calculate the magnetostrictive
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Figure 1. (color online) a) Top view on a simulated radial breathing mode of the described model with color-coded
displacement amplitude exhibiting radial symmetry. b) The displacement amplitude plotted against the radial coordinate
is approximately linear in its radial position.

force density �fMS. It is given by the divergence of the stress tensor σ̄(�r, t)25

�fMS(�r, t, �B) = �∇ · σ̄(�r, t). (8)

The stress created by a magnetostrictive material in an uniform magnetic field �B is in the most general case given
by �σ(�r, t) = �Bᾱ, where ᾱB is the magnetostrictive stress tensor.26 However, in a magnetostrictive material with
aligned domains, as considered here, only the longitudinal magnetostrictive stress coefficient αB

33 is of interest.14

The magnetostrictive normal stress is then

�σ(�r, t) = B(t)êx · αB
3x(�r), (9)
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where αB
3x(�r) is the projection of the longitudinal magnetostrictive stress on the direction êx of the magnetic

flux density B. Using the equality αB
3x(�r) = αB

33(�r) cos θ, where θ denotes the angle between the direction of the
magnetic field and the main magnetisation axis of the Terfenol-D,14 we get

�fMS(�r, t, �B) = �B(t) · cos θ · ∂α
B
33(�r)

∂�x
. (10)

Assuming the magnetic field to be applied at a single frequency �B(t) = �B0 · eiωsigt and along the main magne-
tostrictive axis (cos θ = 1), the above equation reads in frequency space:

�fMS(�r, ω, �B0) = B0 · ∂α
B
33(�r)

∂�x
· δ(ω − ωsig). (11)

The magnetostrictive coefficient αB
33 is only non-zero in the central Terfenol-D disk with radius R̃ that is described

by the Heaviside step function Θ(R̃− r), and therefore we can calculate the force density at the signal frequency
ωsig

αB
33(�r) = αB

33 ·Θ(R̃− r) =⇒ ∂αB
33(�r)

∂�r
= αB

33 · δ(R̃ − r)

=⇒ �fMS(�r, ωsig, �B0) = B0
∂α(�r)

∂�r

∂�r

∂�x
êx = B0α

B
33δ(R̃− r) cos βêx, (12)

where we use cylindrical coordinates (r = |�r|, β = arctan
(

x
y

)
, h = z). The magnetostrictive force density is

therefore zero everywhere except on the perimeter of the Terfenol-D disk, described by a δ−function. Naturally,
it always points in the direction of the applied magnetic field and it is proportional to its amplitude B0 and
the magnetostrictive stress coefficient αB

33. The dependence on the angle β stems from the geometry of the

Terfenol-D disk. Inserting �fMS and �Ψq(�r) into Eq. (6) yields the magnetic actuation constant

cact = H ·
∫ ∞

0

∫ 2π

0

αB
33δ(R̃− r) cos (β)(êx · �r)

√
2

R
dβrdr

=

√
2HαB

33

R

∫ ∞

0

∫ 2π

0

δ(R̃ − r)r2 cos (β)(êx · êr)

=

√
2HR̃2αB

33

R
· αB

33 ·
∫ 2π

0

cos2 (β)dβ

=
π
√
2HR̃2αB

33

R
= 302μm2 · αB

33, (13)

where we have used the fact that (êx · êr) = cosβ. The result can be interpreted as the Terfenol-D disk applying
a field dependent pressure determined by the magnetostriction coefficient over an effective area of 302 μm2.

In order to calculate the magnetostrictive stress coefficient αB
33 from a magnetostrictive strain coefficient dH33

that we know from literature,27, 28 we need to determine the relationship between the external magnetic flux
density Bext, which we aim to detect, and field strength inside the material Hin. As we assume the magnetic
field to be in parallel with the Terfenol-D disk, we can use the demagnetization factor N = 0 for a flat disk.29

In this case, Bext and Hin are related simply by the magnetic permeability of free space

Hin = Hext = μ−1
0 Bext. (14)

The equivalent relation follows between the magnetostrictive stress coefficients αB
33 and αH

33, which quantify the
response of Terfenol-D on applied magnetic flux densities B and magnetic field strengths H . Furthermore, the
magnetostrictive stress- and strain coefficients are connected by the Young modulus E of Terfenol-D

αB
33 = μ−1

0 αH
33 = μ−1

0 EdH33. (15)
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We use the value dH33 = 1.7 ppm/Oe from Ref.,28 which is a rather conservative estimation (compare Ref.27).
Using E=30 GPa and μ0 = 10−4 T/Oe. We get from the above equation αB

33 = 5 · 108 Pa/T. Inserting this in
Eq. 13 finally yields

cact = 0.19
N

T
. (16)

2.4 Predicted sensitivity and discussion

The minimal detectable field Bmin as a function of frequency for a measurement time of one second calculated
from Eq. (5) is shown in Fig. 2. In the shot noise limited case (solid red line), the Brownian noise (dashed
blue line) dominates over the measurement noise from DC to about 15 MHz, allowing a sensitivity of about
750 fT/

√
Hz. For frequencies much higher than the mechanical resonance frequency, the susceptibility of the
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Figure 2. (color online) B-field sensitivity of a toroidal WGM based magnetometer. Dashed blue line (partly hidden
by inset): Detection limit due to Brownian noise. Dashed yellow line: Detection limit due to laser shot noise. At the
mechanical resonance frequency of 5.6 MHz the shot noise detection limit would be as low as 100 aT/

√
Hz (not shown

in figure). Solid red line: Magnetic field detection limited by Brownian noise and laser shot noise. The solid green
line takes into account thermorefractive noise, Brownian noise and laser shot noise. Inset: Cross-section of the toroidal
WGM resonator consisting of a Terfenol-D disc (in gray) surrounded by an optical silica resonator (light blue, optical field
yellow). Red arrows represent the direction of the magnetostrictive force.

oscillator decreases as 1/ω and thus at frequencies above 15 MHz, the laser shot noise (dashed yellow line)
dominates and the sensitivity decreases approximately as the mechanical susceptibility. If the measurement is
limited by thermorefractive noise (solid green line), the sensitivity below 30 MHz is degraded by a factor of
about two, except for a frequency band of a few megahertz around the mechanical resonance frequency, where
the Brownian noise dominates over the thermorefractive noise and again a peak sensitivity of 750 fT/

√
Hz is

achieved. We used experimentally measured values for the thermorefractive noise spectrum from Ref.22

It should be noted that the calculated sensitivity is a conservative estimation, as by optimized heat-treatment
and applied prestress on the Terfenol-D, and by choosing an ideal bias magnetic field the magnetostrictive strain
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coefficient dH33 can reach values of up to 25 ppm/Oe, potentially increasing the achievable sensitivity by a factor
of 15. We have also investigated other optomechanical systems, in particular microscale Fabry-Perot resonators30

and photonic-crystal cavities,31 as potential magnetic field sensors.18 However, the toroidal WGM magnetometer
shows the best predicted sensitivity its geometry allows for an efficient coupling of the magnetostrictive stress to
the mechanical radial breathing mode.

3. CONCLUSION

Calculations based on a finite element model and the theory developed for this purpose19 predict it may be
possible to achieve sensitivities in the high fT/

√
Hz range with a sensor based on a toroidal whispering-gallery-

mode cavity and utilizing the magnetostrictive alloy Terfenol-D. If fabrication related challenges can be mastered,
the suggested sensor could potentially combine high sensitivity with microscale resolution and 3-D field imaging
capability due to its small geometric size and the ability to be fabricated in a dense 2-dimensional array on a
silicon chip.36 It could be very versatile, having a number of uses in imaging, especially in the medical field. The
ability to operate at room temperature and in relatively high bias fields of up to ∼ 0.8 Tesla together with the
uncomplicated optical readout could make it a useful tool, in particular for portable applications.
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