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Abstract: Cavity optoelectromechanical regenerative amplification is
demonstrated. An optical cavity enhances mechanical transduction, allowing
sensitive measurement even for heavy oscillators. A 27.3 MHz mechanical
mode of a microtoroid was linewidth narrowed to 6.6± 1.4 mHz, 30 times
smaller than previously achieved with radiation pressure driving in such a
system. These results may have applications in areas such as ultrasensitive
optomechanical mass spectroscopy.
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1. Introduction

High quality factor (Q), low linewidth mechanical oscillators have many applications, such as
highly sensitive spin [1] or charge sensing [2], frequency standards in clocks [3], mass sensing
with subzeptogram sensitivity [4], characterizing surface diffusion processes [5] and measuring
forces with attonewton resolution [6]. The linewidth of a mechanical mode is determined by the
energy dissipation rate of the mode, which without feedback is dominated by friction forces [7].
A common technique to reduce the linewidth is to apply a feedback force to amplify the os-
cillator motion and bring it into the regenerative oscillation regime. When the feedback force
overcomes friction, the oscillation becomes coherent and self-sustained. This reduces the me-
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chanical linewidth and increases the mechanical energy by several orders of magnitude, which
facilitates extremely precise monitoring of mechanical frequency-shifts.

The past few years have seen the rapid development of cavity optomechanical systems, which
combine mechanical oscillators with a confined optical field. In these systems, the strong in-
teraction between the mechanical motion of the resonator and the cavity-enhanced optical field
allows both control and measurement of the motion. Cavity optomechanical systems have many
promising applications, such as on-chip phononic information processing [8, 9], displacement
sensing at the standard quantum limit [10, 11], and ultrasensitive force measurement [12].
Ground-state cooled optomechanical oscillators are also proposed to probe exotic problems
such as macroscopic quantum behavior [13], quantum gravity [14] and microscale gravity [15].

Radiation pressure driven regenerative amplification was demonstrated in an early cavity
optomechanical experiment [16]. However, the process is constrained by the low magnitude
of available radiation pressure forces and the inability to modify the force spectrum indepen-
dently from optical parameters. This both limits the achievable mechanical line narrowing, and
results in unavoidable mechanical frequency pulling which introduces noise in sensing appli-
cations [17]. These constraints are overcome here using electrical gradient forces and ultra-
sensitive optomechanical transduction within a feedback loop, rather than radiation pressure,
to control the mechanical motion. In the context of cavity optomechanics, such a control sys-
tem was first implemented in a recent demonstration of optoelectromechanical feedback cool-
ing of a microtoroid [18, 19], and has also been demonstrated in silicon disk resonators [20].
Some applications require large oscillators, such as mass sensing of large samples. However,
transducing the motion of large oscillators can be difficult as mechanical amplitude scales in-
versely with the square root of resonator mass. In this regime, cavity enhanced optical readout
is particularly relevant as it offers extremely sensitive detection. For applications requiring high
sensitivity and large size, cavity optoelectromechanical oscillators are a promising class of
resonators. Note that, similar to regenerative amplification, mass sensing can be achieved via
mechanical parametric amplification [21]. This is a fundamentally different process based on
electrically induced mechanical nonlinearities, which by contrast is phase sensitive and requires
no feedback [22].

In this work, a model of the regenerative amplification process is derived which includes both
electrical and radiation pressure forces. We experimentally demonstrate regenerative oscilla-
tions in a silica microtoroidal optoelectromechanical system, observing mechanical linewidths
as low as 6.6±1.4 mHz with a corresponding effective mechanical quality factor of 4×109. For
comparison, the best optically driven oscillators published have achieved 200 mHz linewidth
in a microtoroid [23], and recently 20 mHz in a silicon nitride ring oscillator [24]. Recent
experiments in a silicon oscillator have also demonstrated cavity optoelectromechanical re-
generative amplification, as a means to filter and modulate the optical fields [25]. The higher
optical quality factor of reflown silica used in the work reported here, combined with exter-
nally controllable electrodes allow 15 dB lower phase noise to be achieved at similar offset
frequencies. This is an enabling step towards a new range of applications, including ultrasensi-
tive mass spectroscopy [26, 27], photonic clocks [23] and a range of nonlinear radio-frequency
(RF) processes [28].

2. Theory

The motion of a mechanical oscillator under the action of thermal FT , optical Fopt, and feedback
Ff b forces can be described by the equation of motion

m[ẍ(t)+Γ0ẋ(t)+ω2
mx(t)] = Ff b(t)+Fopt +FT (t), (1)
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Fig. 1. A schematic of the experiment. FPC, fiber polarization control. The Feedback Con-
trol includes filtering and control over both feedback phase and amplitude. The network
analyzer was used to characterize the driven response of the system, and all other results
were taken with the signal analyzer. The subplots show the motion of the mechanical mode
investigated here, (a) with driving from the network analyzer, and (b) the thermal motion
measured on the spectrum analyzer. Shown in light blue is a fit to the data shown in green,
which determines the intrinsic decay rate Γ0 and frequency ωm. The vertical axis of each
subplot is in dB against an arbitrary reference.

where m, Γ0 and ωm are respectively the effective mass, dissipation rate and natural fre-
quency [29]. When the feedback force is proportional to the velocity, it opposes the dissipation,
and if large enough, will cause regenerative oscillations. In the recent work of Kippenberg et
al. [16], optical radiation pressure was used to drive an oscillator to regenerative amplification.
The radiation pressure force due to intracavity optical power PIC is given by Fopt =

2πn
cm PIC,

with n the index of refraction [30]. With the optical power below the threshold for regenerative
amplification, this modifies the equation of motion to

m[ẍ(t)+Γrẋ(t)+ω2
r x(t)] = Ff b(t)+FT (t), (2)

where the action of the optical force is to decrease the mechanical decay rate to Γr =

Γ0(1− Popt
Pthresh

) and shift the mechanical resonance frequency to ωr = ωm(1+ηpPopt) [23]. The
frequency pulling is unavoidable with optical driving, and could limit sensitivity in some appli-
cations such as mass sensing. The regenerative oscillation regime is entered when the incident
optical power Popt exceeds the threshold power Pthresh, such that the decay rate becomes nega-
tive. The degree of frequency pulling is determined by the constant ηp, which depends on the
optical detuning and physical parameters of the system.

In this article we include electrical feedback while keeping the optical power below the
threshold for optical regenerative amplification. Assuming the mechanical oscillations shift the
optical resonant frequency much less than the optical linewidth, the mechanical transduction is
linear. Then the applied force is Ff b(t) = mωmΓrGx(t − τ), where τ is a small delay such that
x(t − τ) ∝ ẋ(t), G = G(x,G0) is the steady-state feedback gain and G0 is the small-signal gain.
The gain G is normalized here so that regenerative amplification occurs for G0 > 1. Below this
threshold there is no saturation in the feedback, and the gain is given by G = G0.

In the regenerative amplification regime, the feedback exceeds the dissipation, and the motion
grows exponentially. The feedback force also grows exponentially as it is proportional to the
position, until a component of the feedback electronics saturate, causing the steady-state gain G
to take a value which is very close to but smaller than 1. To determine the narrowed mechanical
linewidth, we substitute the expression for the electrical feedback force into Eq. (1), Fourier
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transform and rearrange to find

x(ω) =
FT (ω)

m(ω2
r −ω2 + iΓrω)− imωmΓrG

. (3)

In the high Q limit, the frequency range of interest lies very near the mechanical resonance
frequency. We therefore take ω = ωr +Δ, with Δ � ωm, and assume perfect feedback phase
such that e−iωτ ≈ i+Δτ . With these approximations, Eq. (3) may be re-expressed as

x(Δ) =
1

mωm

FT (ω)

−2Δ+ iΓr(1−G)
. (4)

The feedback narrowed full-width half-maximum linewidth Γ is then easily found to be

Γ = Γ0(1− Popt

Pthresh
)(1−G). (5)

We see that the linewidth Γ goes to zero as the gain G approaches 1 or the optical power Popt

approaches the threshold Pthresh. The steady state gain G can be found in terms of experimentally
measurable parameters by calculating the total mechanical energy Eosc

Eosc =
1

2π
mω2

m

∫ ∞

−∞
|x(ω)|2 dω =

1
2kT

(1− Popt
Pthresh

)(1−G)
, (6)

where |FT (ω)|2 = mΓ0kT due to the fluctuation-dissipation theorem, with thermal amplitude
fluctuations freezing out in the high power limit [30, 31]. In the absence of driving (G = 0 and
Popt = 0) these fluctuations do not freeze out, doubling the thermal contribution and reducing
this expression to the expected thermal energy ET = kT . Equation (6) allows the steady-state
gain G to be established from measurements of the intrinsic mechanical decay rate and the
oscillator energy with and without feedback. G approaches unity in the limit of regenerative
amplification, with 1−G ≈ 10−5 in the experiments reported here. The oscillator energy can
then be expressed simply as ET

Eosc
= 2(1−G)(1− Popt

Pthresh
). Substituting this expression into Eq. (5)

finally gives the expected narrowed mechanical linewidth.

Γ =
Γ0

2
ET

Eosc
. (7)

For optical powers below the threshold for radiation pressure driven regenerative oscillations,
as in our experiment, optical driving is indistinguishable from electrical feedback in this expres-
sion. This expression for the linewidth is identical to that obtained from a more complex anal-
ysis of radiation pressure driving [30], and is of a similar form to those for other regenerative
amplifiers, such as RLC electronic oscillators [32], optoelectronic oscillators [33], masers [34],
and the Schawlow-Townes limit for laser linewidth [35,36]. Note that an equivalent expression
could be derived in terms of the mechanical output power rather than the oscillator energy,
similar to the expressions common for lasers and optoelectronic oscillators. Here, however, the
oscillator energy is more generally relevant, since in contrast to those situations, the output
phonon field is not readily accessible. It is instead enhancements in the oscillator energy upon
which applications typically depend.

3. Experiment and results

3.1. Experimental system

To experimentally demonstrate optoelectromechanical regenerative amplification, a room tem-
perature silica microtoroid was used with electrical gradient forces provided by an electrode

#164160 - $15.00 USD Received 6 Mar 2012; revised 9 May 2012; accepted 10 May 2012; published 22 May 2012
(C) 2012 OSA 4 June 2012 / Vol. 20,  No. 12 / OPTICS EXPRESS  12746



placed in close proximity. The optical cavity arises due to light being confined in whispering-
gallery modes within the toroid by total internal reflection. The mechanical oscillator is sim-
ply the natural vibrational modes of the physical structure. These vibrational modes modulate
the path length of the optical cavity, which shifts the optical resonant frequency giving strong
coupling between oscillator position and optical fields. Silica microtoroids can have optical Q
factors of 108, which allows motion transduction sensitivity at the level of 10−19 m Hz−1/2 [10].

A schematic of our experimental setup is shown in Fig. 1. A shot-noise limited fiber laser
provided 60 μW of 1560 nm light, which coupled evanescently from a tapered optical fiber
into a whispering-gallery optical mode with an intrinsic Q factor of 3× 106, and with major
and minor diameters of 65μm and 6μm. The laser was blue-detuned to measure the motion of
the microtoroid, so that mechanically induced optical resonant frequency shifts cause intensity
modulation of the transmitted optical field. Thus mechanical motion was measured directly on
the output light intensity with transduction sensitivity of 3× 10−17 m Hz−1/2. We chose to
study a 6th order crown mode at 27.3 MHz (shown in Fig. 2 inset), as it was clearly separated
in frequency from other detected modes. Due to the symmetry of the structure, two spatially
separated modes exist at this frequency. The mode which will be regeneratively amplified is de-
fined spatially as the one which responds most to the electric force profile, while its orthogonal
counterpart is not amplified. The response of this mode to coherent electrical driving from a
network analyzer is shown in Fig. 1(a), demonstrating that this mode responds to the electrical
driving. The thermal motion of this mode is shown in Fig. 1(b) to which we fit the mechanical
parameters and find the mechanical quality factor to be Q = 600.

To enable sub-Hz linewidth measurements it was critical to suppress low frequency noise in
the apparatus. The primary sources of low frequency noise were motion of the tapered fiber
due to air currents and thermal fluctuations in the toroid due to absorption of background light.
Air currents were eliminated by placing the experiment in a hermetically sealed box, and back-
ground light levels were minimized. The use of a shot noise limited laser and low noise elec-
tronics ensured that both the radiation pressure back-action on the mechanical oscillator and the
electronic feedback were at the quantum noise limit. The low noise performance allows high
sensitivity measurements with low optical intensity, thus minimizing optical back-action. The
detected photocurrent was band-pass filtered to suppress other mechanical modes. Electronic
components controlled the phase (JSPHS-26) and amplitude (ZX73-2500) of this signal before
it was amplified and fed back to an electrode. This amplified signal was fed back to a sharp
stainless steel electrode with a 2 μm diameter tip. This allowed electrical gradient forces to be
applied to the microtoroid following the approach of Ref. [18,19]. This force was intensified by
placing the electrode at the end of a coaxial half-wave transmission line resonator tuned to the
mechanical resonance frequency. This enhanced the applied force by the resonator’s Q factor
of 25 compared to the work of Ref. [18, 19]. Further to this, a constant voltage of 120 V was
applied to the electrode increasing the polarization of the silica microtoroid structure and thus
enhancing its response to the applied electric field. This constant polarization had a negligible
effect on the mechanical mode properties.

The electrode was positioned 5–20 μm vertically above the microtoroid rim. At this location,
it produced an electric field gradient which was not azimuthally symmetric, and therefore able
to excite the mechanical mode. While the overlap between the applied force and the mechanical
mode was small, it was sufficient to allow regenerative amplification of the mechanical mode.
If the electric field were tailored to the mechanical mode, the same applied forces could be
generated with much a lower electrode voltage. This could be important in applications for
which power consumption is a limiting factor.

By adjusting the phase of the feedback, the gradient force was optimized to maximally am-
plify the mechanical motion of the 27.3 MHz mode, and the feedback gain was varied by adjust-
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ing the variable attenuator. As the small signal gain was increased toward threshold, the energy
in the oscillator increased as expected from Eq. (6), and the mechanical resonance narrowed as
described by Eq. (5). Above threshold the feedback overcame the mechanical damping, with
the mechanical energy growing until the feedback amplifier saturated. This clamped the energy
to a fairly constant level, typically 4–5 orders of magnitude greater than the thermal energy. Fig-
ure 2 shows the increase in oscillator energy as the small signal gain was increased across the
threshold. Spectra of the mechanical resonance are shown in Fig. 3 both without amplification,
and in the regime of regenerative amplification. The amplified signal has a peak power spectral
density which is over 50 dB higher and a sub-Hz linewidth, which could not be resolved on our
spectrum analyzer (shown in inset).

3.2. Determining the mechanical linewidth

Because the mechanical linewidth was unresolvable, it was determined via phase noise analysis.
The finite linewidth of the mechanical signal causes a floor in phase noise power which is given
by

10L (ΔΩ)/10 = Γ ΔΩ−2, (8)

where ΔΩ is the detuning from the carrier frequency and L (ΔΩ) is the phase noise power
measured at the detuning normalized to the power of the central peak, in units of dBc/Hz [30,
36]. An example of a measured phase noise trace is shown in Fig. 4(a). The results match the
predicted ΔΩ−2 dependence over a wide range of offset frequencies. At several frequencies
the phase noise exceeds the prediction from the expression above, with other noise sources
dominant. Much of the additional phase noise seen in the trace at low offset frequencies are
contributed by harmonics of one low Q mechanical resonance at 108 Hz in the tapered optical
fiber. A high noise floor is present partly because we use a signal analyzer to extract phase
noise rather than a dedicated phase noise analyzer. This noise floor was found to be well below
the measured noise between 20 Hz and 1 kHz offset, where we perform our analysis. The
minimum phase noise achieved in our system was determined to be −84.4±1.1 dBc/Hz at an
offset frequency of 500 Hz.

The mechanical linewidth was inferred from phase noise data by fitting a noise floor propor-
tional to ΔΩ−2 to the phase noise spectrum, as in Fig. 4(a). Since the measured phase noise
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must always be greater than or equal to the noise floor of Eq. (8), this fit gives an upper bound
on linewidth. Due to the clear ΔΩ−2 trend observed over a significant frequency range in all
phase noise traces analyzed, we are confident this corresponds closely to the actual linewidth.
To verify this we experimentally confirmed the predicted dependence of linewidth on mechan-
ical energy.

To test this dependence, the phase noise was analyzed for data with a range of mechanical
energies. Mechanical energy was controlled by varying the electrode-microtoroid gap while
keeping the feedback above threshold, which adjusts the force applied to the mechanical mode.
The energy was measured on a spectrum analyzer for each data point, and normalized against
measurements of the thermal motion to give the ratio Eosc/ET . Each energy measurement was
made with a bandwidth larger than the linewidth, so that the spectral peak height would contain
essentially all of the mechanical energy. The measured thermal motion was from two degen-
erate modes, so had an energy of 2kT . The extracted linewidths are shown against oscillator
energy in Fig. 4(b). The linewidth is found to follow a trend of Γ ∝ E−0.91±0.12

osc , which to within
error matches the predicted relation from Eq. (7) of Γ ∝ E−1

osc. The linewidth achieved for max-
imum oscillator energy was 6.6± 1.4 mHz, giving an effective Q factor of 4× 109, compared
to the smallest published linewidth achieved by optomechanical driving in a microtoroid of
200 mHz [23], with an equivalent Q factor of 2.5×108.

3.3. Application to mass sensing

This system has potential application for mass sensing, with the regeneratively narrowed me-
chanical linewidth providing high sensitivity to mechanical resonance frequency shifts due to
the deposition of small masses on the oscillator. The mass sensitivity is then limited by the ac-
curacy with which the mechanical resonance frequency can be determined within the detection
bandwidth Δ f . In our current experiments, the limiting factor is drift in the position of both
the optical taper, and hence coupling condition, and electrode cause feedback phase fluctua-
tions which in turn result in fluctuations of the mechanical resonance frequency. However, it
is possible to stabilize the position of both taper [37] and electrode using active and/or passive
techniques. Assuming that the drift in mechanical resonance frequency over the oscillation life-
time can be made smaller than the narrowed linewidth, thermomechanical fluctuations place a
fundamental sensitivity limit to mass sensing [38]

δmmin = 2mmode

(
ET

Eosc

)1/2( Γ
2πQωm

)1/2

, (9)

for a mode mass mmode and detection bandwidth Δ f = Γ/2π . The mode mass here is the mass
which moves in the oscillations, mmode =

∫
ρ |u(r)|2dr, with ρ the density and u(r) the spa-

tial shape of the mode [39]. Using the spatial profile calculated with finite-element modeling
this gives a mode mass of 5× 10−9 g. Using this, along with Eosc

ET
= 105, Γ = 2π × 0.01 Hz,

Q = 600 and ωm = 2π × 27.3 MHz, an optimum sensitivity of δmmin ≈ 10−17 g is predicted
at room temperature and atmospheric pressure. The predicted mass sensitivity is comparable
to the the best sensitivities achieved in room temperature mechanical sensors. Sensitivity at
this level has been achieved in microfluidic channels embedded within cantilevers [40], and
cantilevers in air [41]. Both of these systems have significant differences to our setup. The mi-
crofluidic integrated cantilevers measure sample masses within fluid, whereas the microtoroid
would operate on samples in air. Cantilever operating in air perform a similar measurement,
but are much smaller; the device in Ref. [41] is 3 orders of magnitude lighter than our micro-
toroid. Performing mass measurement with the larger structure of a microtoroid may enable
measurements with comparative sensitivity on substantially larger samples. This could allow,
for example, sensitive characterization of single-cell dynamical mass changes in processes such
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as photosynthetic growth. Introducing cavity enhanced transduction to mechanical mass sen-
sors could be a promising technique to extend the range of ultrasensitive measurements to larger
samples.

4. Conclusion

Regenerative oscillation was achieved in a cavity optoelectromechanical system using feedback
which combined cavity enhanced optical transduction with electrical actuation. The optical cav-
ity enhances the mechanical transduction over standard optical or electrical techniques, and the
electrical forces allow stronger force with improved control when compared to optomechanical
driving of such an optomechanical cavity. A theoretical model of this system was formulated
to include both radiation-pressure and electrical feedback. Linewidth narrowing from 46 kHz
to 6.6±1.4 mHz was achieved at a frequency of 27.3 MHz, corresponding to an effective qual-
ity factor of 4× 109. This linewidth is smaller than that achieved in similar radiation pressure
driven regenerative oscillators, which have been reported to reach 200 mHz. The linewidth was
predicted and experimentally confirmed to scale inversely with mechanical energy. This opens
new possibilities for sensitive mass spectroscopy at room pressure and temperature.
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