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In recent years, the advance of novel chemical growth techniques has led to the fabrication of 
complex, three-dimensional magnetic nanostructures. The corners and edges of such realistic 
geometries are generally not sharp but rounded. In a previous article we have argued that high 
demagnetization fields in the vicinity of sharp edges lead to the formation of an asymmetric vortex 
state in pyramidal-shaped magnetic shell structures. The asymmetric vortex state is potentially 
interesting with respect to future magnetic memory devices. In this work a micromagnetic model is 
used to investigate the effect of rounded corners and edges on the magnetic reversal process within 
these pyramidal-shaped magnetic shell structures. In particular, we explore the degree of rounding, 
which has to be introduced in order to suppress the asymmetric vortex state. Another emphasis is 
placed on the magnetic reversal of (quasi-)homogeneous states within these structures. We 
demonstrate that the rounding of corners significantly reduces the coercivity. This complies with 
former studies on cuboidal structures, which suggest the important effect of corners on the magnetic 
reversal of homogeneous magnetic states. The present study uses a finite-element discretization for 
the numerical solution of the micromagnetic equations, which provides flexibility with respect to the 
modeling of complex shapes. In particular, this method is very accurate with respect to structures 
with a smooth surface. V 2012 American Institute of Physics. [doi:10.1063/1.3679073]C 

I. INTRODUCTION	 the macro-spin model of ellipsoidal geometries, the reversal 
process becomes more homogeneous. The expected higher 

In micromagnetic studies one usually investigates ideal-
degree of homogeneity of the remanent state should not have 

ized geometries such as rectangular prisms, which approxi
a strong effect on the spatially averaged magnetization. 

mate realistic structures grown in experiments. This is also a 
Consequently, only minor modifications in the remanent 

result of the fact that most micromagnetic studies are based 
magnetization are expected. These a priori assumptions are 

on a finite difference discretization, which is only accurate in

the case of cuboidal structures.1 However, realistic structures 

confirmed by the investigations in this article.

The asymmetric vortex state is observed for scenario (2) 

contain non-ideal features like surface roughness and a 
in the absence of any rounding. As the formation of this state 

rounding of corners and edges. The important effect of a 
is due to the occurrence of high local demagnetization fields 

rounding of corners and edges on the formation of magnetic 
states has already been demonstrated before.2,3	 in the vicinity of sharp edges (Section 4.1.4 in Ref. 4), it 

should be suppressed in the presence of a sufficient degree of 
In a recent article we have studied the magnetic proper

ties of pyramidal-shaped nickel shells.4,5 In this article we	
rounding. This article investigates which degree of rounding 
leads to such a suppression. 

introduce a rounding of corners and edges to these structures 
and consider two scenarios: 

II. METHODOLOGY 
(1) The magnetic reversal of a quasi-homogeneous state 

We use the same approach as in Ref. 4, i.e., we use a sim
along the easy-axis direction. 

ple micromagnetic model, in which we do not consider the 
(2) A magnetic reversal at larger structure sizes, at which 

magnetocrystalline anisotropy. For our fundamental study it is 
the asymmetric vortex state forms at remanence in the 

advantageous to use such a simple model, so that effects from 
absence of rounding. 

the rounding of corners become as prominent as possible. The 
In the former case the corresponding reversal curve has saturation magnetization is set to MS ¼ 493 380 A m�1 and 

a square-like shape and a high remanent magnetization in the the exchange constant to A ¼ 7.2 � 10�12 A m�1.6 The finite-

absence of rounding.4 The introduction of a rounding should element based solver NMAG is used to solve the micromagnetic 
lead to a reduction of the coercivity field, as, analogous to equation numerically.7 The geometrical model is based on the 

pyramidal-shaped geometry presented in Ref. 4. Thus, the 
a)Author to whom correspondence should be addressed. Electronic mail: size of the structure is determined by the edge length a of the 

fangohr@soton.ac.uk. square base, while the height of the structure is kept fixed at 
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FIG. 1. (Color online) (a) The small inset on the top right shows the pyramidal shell from a top-down perspective. The marked diagonal refers to the cross-

section shown in the figure. The geometry without a rounding is given by the dotted lines (visible at the corners). The rounding is introduced by replacing these 
corners by part-circles, the corresponding full circles are visualized by the dashed lines. Thus, the rounding at the tip is defined by the corresponding radii rtop,i 

and rtop,a. However, in this article the variables dtop and rtop,a are used. (b) The inset on the top right shows the base of the pyramidal shell with the highlighted 
corner corresponding to the section shown in Fig. 1(b). As for the tip we define the rounding at the corners of the base by using the equivalent parameters dbase 

and rbase,a. To create a pyramidal shell with rounded corners we then take the following steps: we rigidly sweep the base of the structure along the indicated 
red path (top right of (a)) between point A at the corner of the base and point B at the tip in order to create a three dimensional (3D) solid. This is done for all 
four equivalent corner points of the base so that four corresponding solids are created. By forming the union of these solids a pyramidal shell with rounded 
edges and corners is created. 

h ¼ a/2. The shape of the structure is controlled by the thick

ness trel of the shell. trel ¼ 0.0 corresponds to an infinitesimal 
thin shell and trel ¼ 100.0 to a conventional pyramid. Figure 1 
shows how a pyramidal shell with rounded corners and edges 
is created. The rounding leads to four additional parameters 
(dtop, rtop, dbase, and  rbase), which are also defined in Fig. 1. 
In the following these additional parameters are presented 
in a dimensionless form, namely drel rrel 

ffiffiffi 
rtop;a =a; drel 

top 
rel

¼ dtop =dtop;0; top 
¼ 2=

p
3 base ¼ dbase =dbase;0, and  rbase ¼ 2rbase;a =a, so  

that they are invariant with respect to a change of the system 
size. In the following we consistently set drel 

top ¼ 1:0.base ¼ drel 

For the discretization of the micromagnetic equation an 
unstructured, tetrahedral mesh is used. Criteria for a sufficient 
mesh resolution are presented in Ref. 4. 

Magnetic reversal simulations are performed, in which 
the external magnetic field is subsequently varied. The direc

tion of the external field is parallel to one of the four equiva

lent edges of the base of the structure. We define this as the x-

direction. After each variation of the external field the mag

netization is relaxed to a stable configuration. Choosing a suf

ficiently small step size for the variation of the external field, 
this approach allows for analyzing the corresponding experi

mental hysteresis measurements. In the presented simulations 
the external field is subsequently varied between 3 and �3 T.  
In the regime of low magnetic fields ðjHextj < 0:05 TÞ, in  
which the actual switching of the magnetization occurs, a 
step size of DHext ¼ 0.001 T ¼ 10 G � 800 A m�1 is chosen 
for the reversal of the quasi-homogeneous states. For the re

versal of the vortex-like configurations a larger step size of 
DHext ¼ 0.01 T ¼ 100 G � 8000 A m�1 has been used at mag

netic fields below Hext < 0:05 T. j j

III. NUMERICAL RESULTS 

In this section two magnetic reversal scenarios are dis

cussed with regard to the influence of the rounding intro

duced in Fig. 1. 

In Fig. 2 the magnetic reversal is shown for pyramidal-

shaped, thin shells (trel ¼ 10%) with a base edge length of 
a ¼ 100 nm and either no or different degrees of rounding at 
corners and edges. The graph shows that the coercivity 
decreases substantially with an increasing degree of round

ing. This alone may not be surprising given the pinning 
effect sharp corners have during a magnetic reversal.8 How

rel relever, already a rounding with rtop ¼ rbase ¼ 7.5%, i.e., with 

FIG. 2. (Color online) The magnetic reversal along the x-direction is shown 
for pyramidal shells with a ¼ 100 nm and trel ¼ 10% and different degrees of 
rounding at the corners and edges. The black curve (crosses) corresponds to 
the reversal of a pyramidal shell with sharp corners and edges. The geome

tries corresponding to the green (circles) and red curve (squares) have been 
rel relcreated with dbase ¼ 1.0 and dtop ¼ 1.0 and the indicated values for the pa

rel relrameters rbase and rtop . The two insets show micromagnetic configurations 
corresponding to the indicated data points of the green curve (circles) (color 
bar and coordinate axes are shown at the top). 
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curvature radii below the exchange length of nickel 
(lexch ¼ 6.86 nm), leads to a reduction in the coercivity from 

~15 200 A m�1 < jHCoercj< 16 000 A m�1 (black curve with 
~crosses) to 8000 A m�1 < jHCoercj < 8800 A m�1 (red curve 

with squares). The reason is that diverging demagnetization 
fields, which occur in the vicinity of sharp corners (see Ref. 
9 and chapter 3 in Ref. 10), are suppressed even in the pres

ence of just a small degree of rounding. Figure 2 also shows 
that rounding has not only an important effect on the coer

civity but also influences the symmetry of the remanent state. 
Inset (a) shows an S state (for an accurate definition of this 
state see Ref. 4) instead of the flower state, which is the re

manent state without a rounding.4 After the reversal a flower 
state is observed (inset (b) in Fig. 2). 

Figure 3 shows the reversal along the x-direction within 
a pyramidal shell with a ¼ 250 nm and trel ¼ 50% and differ

ent degrees of rounding. In Ref. 4 it has been shown that the 
asymmetric vortex state plays an important role during this 
reversal process. Inset (a) of Fig. 3 illustrates the asymmetric 
vortex state. The core of the vortex state is shifted from the 
top to the lower side face of the pyramidal-shaped shell. It 
should be noted that this shift is more pronounced for thinner 
shell thicknesses (e.g., trel ¼ 10%, see Ref. 4). In the illus

trated case the shift of the vortex core to the lower side face 
leads to a net magnetization in the positive x-direction. This 
in-plane net magnetization allows for a switching of the vor

tex core to the four equivalent side faces, so that, theoreti

cally, an asymmetric vortex state is a realization of a quad-

bit.5 During the depicted reversal process the vortex core of 
the asymmetric vortex moves from the lower side face at 

FIG. 3. (Color online) The magnetic reversal along the x-direction is shown 
for pyramidal shells with a ¼ 250 nm and trel ¼ 50% and different degrees of 
rounding at the corners and edges. The black curve (crosses) corresponds to 
the reversal of a pyramidal shell with sharp corners and edges. The geome

tries corresponding to the green (circles), red (squres) and blue (triangles) 
curve have been created with drel 

top ¼ 1.0 and the indicated valbase ¼ 1.0 and drel 

ues for the parameters rrel and rrel . The remanent state of the black (crosses), base top

red (squares), and green (circles) data curve (inset (a)) is an asymmetric vor

tex state, while the remanent state of the blue data curve (triangles, corre

sponding to the highest degree of rounding) is a symmetric vortex state (inset 
(b)). The color scheme of the insets corresponds to the color bar in Fig. 2. 
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remanence to the upper side face at Hext ¼�8000 A m�1 (for 
the black (crosses), red (squares), and green (circles) data 
curves in Fig. 3). Figure 3 also shows that a rounding of 

rel relabout rtop ¼ 30% and rbase ¼ 20% (blue data curve (trian

gles), inset (b)), i.e., with curvature radii exceeding the 
exchange length lexch by several multiples, has to be intro

duced in order to suppress the asymmetric vortex state. This 
can be seen from the fact that only for the blue curve (trian

gles) hMxi=MS ¼ 0 holds at Hext ¼ 0 A  m�1. This stability of 
the asymmetric vortex state with regard to the rounding of 
corners is remarkable for two reasons, namely that (i) its 
occurrence is due to high demagnetization fields in the vicin

ity of sharp corners and edges,4 and (ii) there is a general 
sensitivity of micromagnetic states to changes of the shape 
(as seen in the first part of this article). 

IV. CONCLUSION 

In this article the effect of a rounding of corners and 
edges of ferromagnetic, pyramidal-shaped shell structures on 
the magnetic reversal behavior is studied on the basis of two 
examples. Considering the reversal of (quasi-)homogeneous 
states along their easy-axis direction, it is shown that the 

rel relintroduction of a small rounding (rtop ¼ rbase ¼ 7.5%) reduces 
the coercivity by about a factor 2. This reduction can be 
explained by the fact that the rounding suppresses strong pin

ning fields in the vicinity of sharp corners and edges. It is 
also found that the symmetry of the remanent state may 
change, which suggests that a rounding of corners potentially 
leads to problems when trying to establish homogeneous 
configurations in soft magnetic nanostructures. The study of 
the magnetic reversal of the asymmetric vortex state suggests 
that this state may also exist in the presence of rounded cor

ners and edges with curvature radii exceeding the exchange 
length by several multiples. This stability is a requirement 
for a potential applicability of such a state in modern mem

ory devices. 
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