23,871 research outputs found

    The shape of the urine stream — from biophysics to diagnostics

    Get PDF
    We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (+-2%). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation

    Anisotropy, phonon modes, and lattice anharmonicity from dielectric function tensor analysis of monoclinic cadmium tungstate

    Get PDF
    We determine the frequency dependence of four independent CdWO4_4 Cartesian dielectric function tensor elements by generalized spectroscopic ellipsometry within mid-infrared and far-infrared spectral regions. Single crystal surfaces cut under different angles from a bulk crystal, (010) and (001), are investigated. From the spectral dependencies of the dielectric function tensor and its inverse we determine all long wavelength active transverse and longitudinal optic phonon modes with AuA_u and BuB_u symmetry as well as their eigenvectors within the monoclinic lattice. We thereby demonstrate that such information can be obtained completely without physical model line shape analysis in materials with monoclinic symmetry. We then augment the effect of lattice anharmonicity onto our recently described dielectric function tensor model approach for materials with monoclinic and triclinic crystal symmetries [Phys. Rev. B, 125209 (2016)], and we obtain excellent match between all measured and modeled dielectric function tensor elements. All phonon mode frequency and broadening parameters are determined in our model approach. We also perform density functional theory phonon mode calculations, and we compare our results obtained from theory, from direct dielectric function tensor analysis, and from model lineshape analysis, and we find excellent agreement between all approaches. We also discuss and present static and above reststrahlen spectral range dielectric constants. Our data for CdWO4_4 are in excellent agreement with a recently proposed generalization of the Lyddane-Sachs-Teller relation for materials with low crystal symmetry [Phys. Rev. Lett. 117, 215502 (2016)].Comment: arXiv admin note: text overlap with arXiv:1512.0859

    Anisotropy and phonon modes from analysis of the dielectric function tensor and inverse dielectric function tensor of monoclinic yttrium orthosilicate

    Get PDF
    We determine the frequency dependence of the four independent Cartesian tensor elements of the dielectric function for monoclinic symmetry Y2_2SiO5_5 using generalized spectroscopic ellipsometry from 40-1200 cm−1^{-1}. Three different crystal cuts, each perpendicular to a principle axis, are investigated. We apply our recently described augmentation of lattice anharmonicity onto the eigendielectric displacement vector summation approach [A. Mock et al., Phys. Rev. B 95, 165202 (2017)], and we present and demonstrate the application of an eigendielectric displacement loss vector summation approach with anharmonic broadening. We obtain excellent match between all measured and model calculated dielectric function tensor elements and all dielectric loss function tensor elements. We obtain 23 Au_{\mathrm{u}} and 22 Bu_{\mathrm{u}} symmetry long wavelength active transverse and longitudinal optical mode parameters including their eigenvector orientation within the monoclinic lattice. We perform density functional theory calculations and obtain 23 Au_{\mathrm{u}} symmetry and 22 Bu_{\mathrm{u}} transverse and longitudinal optical mode parameters and their orientation within the monoclincic lattice. We compare our results from ellipsometry and density functional theory and find excellent agreement. We also determine the static and above reststrahlen spectral range dielectric tensor values and find a recently derived generalization of the Lyddane-Sachs-Teller relation for polar phonons in monoclinic symmetry materials satisfied [M. Schubert, Phys. Rev. Lett. 117, 215502 (2016)]

    A cost-benefit analysis of pathways to work for new and repeat incapacity benefits claimants

    Get PDF
    This latest research forms part of a comprehensive independent evaluation of Pathways to Work. The report is based on a cost-benefit analysis conducted by a consortium of researchers from the Institute for Fiscal Studies, the University of Maryland, Baltimore County and the Policy Studies Institute. It examines whether the financial benefits from Pathways are larger or smaller than its costs and the generalisability of some of the quantitative findings. The estimates of costs and benefits relate to new and repeat incapacity benefits claimants in the seven original Jobcentre Plus districts. The overall findings provide a favourable impression of the financial benefits of the Pathways to Work for new and repeat incapacity benefits claimants, for the Exchequer and hence, for society as a whole

    The potential of Antheraea pernyi silk for spinal cord repair

    Get PDF
    This work was supported by the Institute of Medical Sciences of the University of Aberdeen, Scottish Rugby Union and RS McDonald Charitable Trust. We are grateful to Mr Nicholas Hawkins from Oxford University and Ms Annette Raffan from the University of Aberdeen for assistance with tensile testing. We thank Ms Michelle GniÎČ for her help with the microglial response experiments. We also thank Mr Gianluca Limodio for assisting with the MATLAB script for automation of tensile testing’s data analysis.Peer reviewedPublisher PD

    Optimization of controlled environments for hydroponic production of leaf lettuce for human life support in CELSS

    Get PDF
    A research project in the food production group of the Closed Ecological Life Support System (CELSS) program sought to define optimum conditions for photosynthetic productivity of a higher plant food crop. The effects of radiation and various atmospheric compositions were studied

    Perspectives: nursing education - from vision to action in changing world

    Get PDF
    There is consensus that there are shared contemporary issues within nursing and nurse education that require collective consideration and, on occasion, shared solutions. Nonetheless, in the complex world in which we live, taking time to reflect on our work can become lost in the need to meet many competing demands. A conference can be expensive and time consuming, and as time pressures and deadlines loom risk becoming a short trip to present a paper rather than fuller engagement. With this in mind, we offer perspectives on our learning from The Federation of European Nurse Educators (FINE) 11th International FINE Conference in Malta (21–23 February 2018) and some opportunities and challenges facing nursing education today. FINE is a membership organisation, which, since its inception in 1994, has facilitated knowledge exchange and discussion around contemporary challenges in nursing education. Attendees came from 22 nations and five continents to share best practice and educational research innovation. This paper offers insight into key themes that emerged from the conference and the opportunities, innovations and challenges facing nursing education today. We include examples of papers debating these themes. In conclusion, we reflect on our experiences and offer benefits of global networking nursing education

    The implementation and use of Ada on distributed systems with high reliability requirements

    Get PDF
    The use and implementation of Ada in distributed environments in which reliability is the primary concern were investigated. In particular, the concept that a distributed system may be programmed entirely in Ada so that the individual tasks of the system are unconcerned with which processors they are executing on, and that failures may occur in the software or underlying hardware was examined. Progress is discussed for the following areas: continued development and testing of the fault-tolerant Ada testbed; development of suggested changes to Ada so that it might more easily cope with the failure of interest; and design of new approaches to fault-tolerant software in real-time systems, and integration of these ideas into Ada

    Early detection of disease program: Evaluation of the cellular immune response

    Get PDF
    Surfaces of normal, cultured, and mitogen-stimulated mouse lymphoid cells were examined by scanning electron microscopy (SEM). Lymphocytes with smooth, highly villous and intermediate surfaces were observed in cell suspensions from both spleens and thymuses of normal mice and from spleens of congenitally athymic (nude) mice. Several strain-specific surface features were noted, including the spine-like appearance of microvilli on C57B1/6 lymphocytes. Although thymus cell suspensions contained somewhat more smooth cells than did spleen cell preparations, lymphocyte derivation could not be inferred from SEM examination. Studies of cells stimulated with mitogenic agents for thymus-derived lymphocytes (concanavalin A) or for bone marrow-derived lymphocytes (lipopolysaccharide) suggested that, in the mouse, development of a complex villous surface is a general concomitant of lymphocyte activation and transformation

    Implementing learning analytics for learning impact: Taking tools to task

    Full text link
    © 2020 Elsevier Inc. Learning analytics has the potential to impact student learning, at scale. Embedded in that claim are a set of assumptions and tensions around the nature of scale, impact on student learning, and the scope of infrastructure encompassed by ‘learning analytics’ as a socio-technical field. Drawing on our design experience of developing learning analytics and inducting others into its use, we present a model that we have used to address five key challenges we have encountered. In developing this model, we recommend: A focus on impact on learning through augmentation of existing practice; the centrality of tasks in implementing learning analytics for impact on learning; the commensurate centrality of learning in evaluating learning analytics; inclusion of co-design approaches in implementing learning analytics across sites; and an attention to both social and technical infrastructure
    • 

    corecore