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Anisotropy and phonon modes from analysis of the dielectric function tensor and the inverse
dielectric function tensor of monoclinic yttrium orthosilicate

A. Mock,1,* R. Korlacki,1 S. Knight,1 and M. Schubert1,2,3

1Department of Electrical and Computer Engineering and Center for Nanohybrid Functional Materials, University of Nebraska, Lincoln,
Nebraska 68588, USA

2Leibniz Institute for Polymer Research, Dresden D-01005, Germany
3Terahertz Materials Analysis Center, Department of Physics, Chemistry, and Biology (IFM), Linköping University,

SE 58183 Linköping, Sweden

(Received 20 November 2017; published 17 April 2018)

We determine the frequency dependence of the four independent Cartesian tensor elements of the dielectric
function for monoclinic symmetry Y2SiO5 using generalized spectroscopic ellipsometry from 40–1200 cm−1.
Three different crystal cuts, each perpendicular to a principle axis, are investigated. We apply our recently described
augmentation of lattice anharmonicity onto the eigendielectric displacement vector summation approach [A. Mock
et al., Phys. Rev. B 95, 165202 (2017)], and we present and demonstrate the application of an eigendielectric
displacement loss vector summation approach with anharmonic broadening. We obtain an excellent match between
all measured and model-calculated dielectric function tensor elements and all dielectric loss function tensor
elements. We obtain 23 Au and 22 Bu symmetry long-wavelength active transverse and longitudinal optical mode
parameters including their eigenvector orientation within the monoclinic lattice. We perform density functional
theory calculations and obtain 23 Au symmetry and 22 Bu transverse and longitudinal optical mode parameters and
their orientation within the monoclinic lattice. We compare our results from ellipsometry and density functional
theory and find excellent agreement. We also determine the static and above reststrahlen spectral range dielectric
tensor values and find a recently derived generalization of the Lyddane-Sachs-Teller relation for polar phonons
in monoclinic symmetry materials satisfied [M. Schubert, Phys Rev. Lett. 117, 215502 (2016)].

DOI: 10.1103/PhysRevB.97.165203

I. INTRODUCTION

The optical properties of rare-earth ion doped single crystal
materials have been the focus of substantial interest over
the recent past. Their unique optical properties render these
materials highly suitable, for example, in optical applications
as active laser media [1–6], in optical signal processing [7,8],
in quantum optics [9–11], and in quantum optical information
technologies [12,13]. Rare-earth Ce3+ or Eu3+ doped mono-
clinic yttrium orthosilicate (Y2SiO5) can be used as phospho-
rous material [14–18] or as scintillator material for detection of
x rays and γ rays [19]. Pr3+-doped Y2SiO5 was investigated for
electromagnetically induced transparency [20]. Cr4+-doped
Y2SiO5 has been studied for use as a saturable absorber in
Q-switching laser devices [21,22].

Despite its wide use in visible spectral range optical appli-
cations, a rather incomplete knowledge seems to exist about
its accurate long-wavelength optical properties. For example,
a complete set of the transverse optical (TO) and longitudi-
nal optical (LO) phonon mode frequencies, amplitudes, and
eigendielectric displacement vectors has not been determined,
neither by theory nor by experiment. Infrared (IR) spectra
measurements and a tentative phonon band assignment were
performed by Lazarev et al. [23]. Raman investigations have
been performed by Voron’ko et al. [24] and by Zheng et al.

*amock@huskers.unl.edu; http://ellipsometry.unl.edu

[25]. Fourier transform IR (FTIR) spectroscopy analysis with
incomplete TO mode assignment was performed recently by
Höfer et al. [26]. The LO mode parameters remain obscure
thus far. To our best knowledge, no phonon mode calculations
were performed for this material.

In this work, we provide a spectroscopic investigation
of the long-wavelength anisotropic properties of Y2SiO5 by
generalized spectroscopic ellipsometry (GSE). GSE is a con-
venient, contactless, nondestructive technique, which utilizes
polarization of light transmitted through or reflected off an
arbitrarily anisotropic sample allowing for the determination
of both the real and imaginary parts of all nine complex
dielectric function tensor elements. Recently, GSE has been
used to characterize monoclinic materials. Jellison et al. first
reported on the determination of the dielectric function of
a monoclinic single-crystalline cadmium tungstate (CdWO4

or CWO) using GSE in the spectral range of 1.5 to 4 eV
and reported the need for four independent dielectric function
tensor elements when describing the full spectral response
of the monoclinic samples. This requirement differed from
all previously GSE-investigated anisotropic materials with
orthorhombic, hexagonal, and tetragonal crystal symmetries
where a maximum of three independent tensor elements
sufficed [27]. Jellison et al. also reported on the determi-
nation of the four real values of the dielectric function
tensor of the monoclinic crystal lutetium oxyorthosilicate
(Lu2SiO5 or LSO) using GSE in the spectral range of 200 to
850 nm [28].

2469-9950/2018/97(16)/165203(17) 165203-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.165203&domain=pdf&date_stamp=2018-04-17
https://doi.org/10.1103/PhysRevB.95.165202
https://doi.org/10.1103/PhysRevB.95.165202
https://doi.org/10.1103/PhysRevB.95.165202
https://doi.org/10.1103/PhysRevB.95.165202
https://doi.org/10.1103/PhysRevLett.117.215502
https://doi.org/10.1103/PhysRevLett.117.215502
https://doi.org/10.1103/PhysRevLett.117.215502
https://doi.org/10.1103/PhysRevLett.117.215502
https://doi.org/10.1103/PhysRevB.97.165203
http://ellipsometry.unl.edu


A. MOCK, R. KORLACKI, S. KNIGHT, AND M. SCHUBERT PHYSICAL REVIEW B 97, 165203 (2018)

We have recently reported that an eigendielectric displace-
ment vector summation (EDVS) approach can be used as
a physical model approach to explain and line-shape match
experimentally determined dielectric function tensor elements
of materials with monoclinic and triclinic symmetries [29,30].
For long-wavelength excitations, the EDVS approach is equiv-
alent to the microscopic Born-Huang description of polar lat-
tice vibrations in the harmonic approximation [31]. The EDVS
approach goes beyond the Born-Huang description because
it provides access to the LO mode properties including their
eigendielectric displacement loss directions. We applied the
EDVS approach to monoclinic β-Ga2O3 [29,32] and CdWO4

[33] and determined the complete set of long-wavelength TO
and LO excitations including their directions within the mon-
oclinic lattices. It was further shown that the EDVS approach
leads to a revised formulation of the Lyddane-Sachs-Teller
(LST) relation [34], derived originally for isotropic materials,
for materials with monoclinic and triclinic crystal symmetries.
In the generalized-LST relation, the ratio of the determinants of
the anisotropic static and high-frequency dielectric permittivity
tensors is related to the squares of the ratios of all LO and TO
mode frequencies, respectively [30].

We have described recently the need to augment anharmonic
lattice broadening effects onto the EDVS approach for correct
match of measured dielectric function spectra from crystals
with monoclinic symmetry. The anharmonic broadening was
proposed for orthorhombic and higher symmetry materials
by Berreman and Unterwald [35] and Lowndes [36] (BUL
broadening). We successfully demonstrated the augmentation
of the BUL broadening for CdWO4 [33].

In this work, we demonstrate that the EDVS approach can
be used to also describe the complete dielectric loss response
tensor for monoclinic materials. Thereby, we describe the
eigendielectric displacement loss vector summation (EDLVS)
approach. The EDLVS approach permits direct determina-
tion of the LO mode frequencies, broadening, amplitude,
and eigenpolarization direction parameters. This approach
dispenses with the need of numerical root finding algorithms
in order to derive the LO mode frequencies from the EDVS
approach. Both approaches, EDVS and EDLVS, while using
the same mathematical form, provide useful access to physical
parameters of TO and LO modes directly from measured
quantities. We augment the same anharmonic broadening
(BUL broadening) onto the EDLVS approach, and demonstrate
an excellent match between experimental and model calculated
data sets for crystals of monoclinic Y2SiO5. Thereby, we
identify and determine the full set of long-wavelength active
phonon modes for Y2SiO5. In this paper, we discuss the results
of multiple approaches, simultaneously performing best-match
calculation procedures using complex-valued spectra of the
determinant and the inverse determinant of the dielectric
tensor, as well as the dielectric tensor element spectra and the
inverse dielectric tensor element spectra.

In parallel with experimental studies, Y2SiO5 has been stud-
ied computationally using density functional theory (DFT).
These studies were motivated by potential applications of the
material, for example, in barrier coatings (and hence focused
on mechanical and thermal properties, and defects [37,38]),
and as a host matrix for doping with rare-earth elements [39].
To the best of our knowledge, there is no comprehensive

DFT study of phonons in Y2SiO5 available so far. It is worth
noting that Y2SiO5 is isostructural with a number of rare-earth
silicates, from Dy2SiO5 to Lu2SiO5 [40]. Thus, Y2SiO5 can be
a convenient model system for a range of other materials.

II. THEORY

A. Symmetry

Monoclinic Y2SiO5 belongs to the space group 15 (centered
monoclinic). The International Tables for Crystallography [41]
list 18 alternative choices of the unit cell for this space group
and several of them have been used for Y2SiO5 in the literature.
The crystallographic standard for monoclinic cells requires
choosing a cell with the shortest two translations in the net
perpendicular to the symmetry direction b, with c < a, β

nonacute, and appropriate centering [42,43]. In the case of
Y2SiO5 these requirements are met by choosing the I2/c cell,
which we will consistently use throughout this paper. The
structural parameters of the unit cell are discussed in the next
section.

B. Density functional theory

Theoretical calculations of long-wavelength active �-point
phonon frequencies were performed by plane-wave DFT
using Quantum ESPRESSO (QE) [48]. We used the ex-
change correlation functional of Perdew and Zunger (PZ) [49].
We employ optimized norm-conserving Vanderbilt (ONCV)
scalar-relativistic pseudopotentials [50], which we generated
for the PZ functional using the code ONCVPSP [51] with
the optimized parameters of the SG15 distribution of pseu-
dopotentials [52]. The initial parameters of the unit cell and
atomic positions were taken from Ref. [45]. The calculations
were performed in a primitive cell p1 = a, p2 = b, p3 =
(a + b + c)/2 appropriate for the body-centered I2/c cell. The
conversions between equivalent cells and the preparation of the
primitive cell were performed with the help of VESTA [53] and
CIF2CELL [54]. The initial structure was first relaxed to force
levels less than 10−4 Ry bohr−1. A regular shifted 4 × 4 × 4
Monkhorst-Pack grid was used for sampling of the Brillouin
zone [55]. A convergence threshold of 1 × 10−12 Ry was used
to reach self-consistency with a large electronic wave function
cutoff of 100 Ry. The comparison of resulting optimized cell
parameters with the existing literature data are listed in Tables I
(unit cell parameters) and II (atomic positions). The relaxed
cell was used for subsequent phonon calculations, which are
described in Sec. IV A.

C. TO and LO mode frequencies and vectors

Two characteristic sets of eigenmodes can be defined from
the frequency-dependent dielectric function tensor, ε(ω), and
dielectric loss function tensor, ε−1(ω). These belong to the
TO and LO modes. TO modes occur at frequencies in which
dielectric resonance occurs for electric fields along êl with
eigendielectric displacement unit vectors then defined as êl =
êTO,l . Similarly, LO modes occur when the dielectric loss ap-
proaches infinity for electric fields along êl with eigendielectric
displacement unit vectors then defined as êl = êLO,l . This can

165203-2



ANISOTROPY AND PHONON MODES FROM ANALYSIS OF … PHYSICAL REVIEW B 97, 165203 (2018)

TABLE I. Comparison between the experimental and theoretical
lattice constants (in Å; monoclinic angle β in ◦).

Exp.a Exp.b Exp.c Exp.d Calc.e Calc.f Calc.g

a 12.38 12.64 12.490 12.469 12.402 12.33 12.847
b 6.689 6.82 6.721 6.710 6.6149 6.594 6.807
c 10.34 10.52 10.410 10.388 10.237 10.23 10.722
β 102.53 102.50 102.65 102.68 101.98 102.2 107.15

aRef. [44].
bRef. [45].
cRef. [46].
dRef. [47], Cr doped.
eThis work, LDA-PZ.
fRefs. [37] and [38], LDA.
gRef. [39], LDA-OLCAO.

be written as

| det{ε(ω = ωTO,l)}| → ∞, (1a)

| det{ε−1(ω = ωLO,l)}| → ∞, (1b)

ε−1(ω = ωTO,l)êTO,l = 0, (1c)

ε(ω = ωLO,l)êLO,l = 0, (1d)

TABLE II. Calculated equilibrium structural parameters of
Y2SiO5 determined in this work in comparison with selected literature
values. Atomic positions are given in fractional coordinates of a, b,
and c, respectively. For the sake of consistency literature data from
different sources have been converted to the same equivalent I2/c cell
and atomic positions, and are provided at the same level of accuracy.

Exp. (Ref. [45])

Y1 0.463 0.241 0.432
Y2 0.143 −0.380 0.308
Si −0.316 0.414 0.380
O1 0.126 0.287 0.292
O2 0.407 0.492 0.063
O3 0.204 0.372 0.029
O4 0.188 0.094 −0.216
O5 0.019 0.415 −0.375

Exp. (Ref. [46])

Y1 0.463 0.243 0.429
Y2 0.141 −0.378 0.306
Si −0.319 0.407 0.373
O1 0.118 0.287 0.300
O2 0.411 0.498 0.054
O3 0.202 0.343 0.032
O4 0.203 0.071 −0.237
O5 0.015 0.398 −0.382

Calc. (this work)

Y1 0.464 0.244 0.426
Y2 0.139 −0.368 0.307
Si −0.318 0.408 0.371
O1 0.117 0.293 0.300
O2 0.413 0.508 0.058
O3 0.202 0.353 0.029
O4 0.201 0.063 −0.246
O5 0.019 0.403 −0.381

where l is an index for multiple frequencies in the sets [30].

1. The eigendielectric displacement approach

ε(ω). The EDVS approach can be used to best-match
model calculate the dielectric function tensor of materials
with monoclinic symmetry [29,30,33]. The dielectric function
tensor ε is obtained from a sum of all contributions from
individual dielectric resonances with displacement parallel
to êTO,l , added to a high-frequency scalar tensor ε∞. The
latter accounts for all eigendielectric contributions from much
shorter wavelengths,

ε = ε∞ +
N∑

l=1

�TO,l(êTO,l ⊗ êTO,l), (2)

where ⊗ is the dyadic product and �TO,l are wavelength-
dependent functions that describe the responses of the l =
1, . . . ,N long-wavelength active TO displacement modes. In
this approach, parameters in functions �TO,l and directions
êTO,l are directly accessible.

ε−1(ω). The EDLVS approach can be used to best-match
model calculate the inverse dielectric function tensor of materi-
als with monoclinic symmetry. The inverse dielectric function
tensor ε−1 is obtained from a sum of all contributions from
individual dielectric loss resonances with displacement parallel
to êLO,l , added to a high-frequency scalar tensor ε−1

∞ . The latter
accounts for all eigendielectric loss contributions from much
shorter wavelengths,

ε−1 = ε−1
∞ +

N∑
l=1

�LO,l(êLO,l ⊗ êLO,l), (3)

where ⊗ is the dyadic product and �TO,l are wavelength-
dependent functions that describe the responses of the l =
1, . . . ,N long-wavelength active LO displacement loss modes.
In this approach, parameters in functions �LO,l and directions
êLO,l are directly accessible. Without providing further proof,
we state that the number of modes N in Eqs. (2) and (3) must
always equal.

2. Model response functions

We use anharmonic broadened Lorentzian oscillator func-
tions to describe the TO and LO mode responses in Eqs. (2)
and Eqs. (3), respectively:

�k,l(ω) = A2
k,l − i�k,lω

ω2
k,l − ω2 − iωγk,l

. (4)

Here, Ak,l , ωk,l , γk,l , and �k,l denote the amplitude, resonance
frequency, harmonic broadening, and anharmonic broadening
parameters for TO (k = “TO”) or LO (k = “LO”) mode l,
respectively, and ω is the frequency of the driving electromag-
netic field.

3. Coordinate-invariant generalized dielectric function
with anharmonic broadening

A factorized form of the dielectric function for long-
wavelength active phonon modes was described by Berreman
and Unterwald [35] and by Lowndes [36] which allowed for de-
termination of TO and LO mode frequencies in materials with
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multiple phonon modes. However, the Berreman-Unterwald-
Lowndes (BUL) form was described under the assumption that
all phonon modes which contributed to a dielectric function
or inverse dielectric function under consideration must be
polarized in the same crystal direction. Recently, a generalized
coordinate-invariant approach was described by Schubert [30]
which discussed how the determinant of the dielectric function
tensor could be utilized regardless of crystal symmetry:

det{ε(ω)} = det{ε∞}
N∏

l=1

ω2
LO,l − ω2

ω2
TO,l − ω2

. (5)

This approach has recently been used by us for the analysis
of monoclinic β-Ga2O3 and CdWO4 [29,33]. Note that the
coordinate-invariant generalized dielectric function can reveal
negative imaginary parts within distinct frequency intervals
when the so-called “TO-LO” rule is broken in materials with
monoclinic symmetry. We will discuss such occurrences in
Sec. IV D 3.

Equation (4) can be shown to directly transform into a
BUL factorized form of the dielectric function equivalent
to the four-parameter semiquantum (FPSQ) model suggested
by Gervais and Periou. The FPSQ model identifies γLO,l to
account for lifetime broadenings of LO modes different from
those of associated TO modes, γTO,l [56]. This four-parameter
model has been used for accurate description of the effects of
anharmonic phonon mode coupling in anisotropic materials
[56–59].

This inclusion of anharmonic broadening into the gen-
eralized coordinate-invariant generalized dielectric function
modifies Eq. (5) into the form

det{ε(ω)} = det{ε∞}
N∏

l=1

ω2
LO,l − ω2 − iωγLO,l

ω2
TO,l − ω2 − iωγTO,l

. (6)

4. Coordinate-invariant generalized dielectric loss function
with anharmonic broadening

A function analogous to Eq. (6) can be obtained for the
dielectric loss response and has the following form:

det{ε−1(ω)} = det
{
ε−1
∞

} N∏
l=1

ω2
TO,l − ω2 − iωγTO,l

ω2
LO,l − ω2 − iωγLO,l

. (7)

5. Coordinate system for Y2SiO5

For monoclinic Y2SiO5 we utilize the orthorhombic system
D1 × D2 × b. Mutually perpendicular D1 and D2 lie within
the a-c plane. In Fig. 1 the orthorhombic system D1 × D2 × b
is shown together with the choice of our sample coordinate
system (x,y,z), with x parallel to −D2, y parallel to −D1, and
z parallel to b. Note that the laboratory coordinate axes x̂, ŷ,
and ẑ are associated with the ellipsometer system (not shown
in Fig. 1), where a given sample surface is parallel to plane x̂-ŷ
and at ẑ = 0, the plane of incidence is parallel x̂.

6. Dielectric function tensor model for Y2SiO5

23 TO modes with Au symmetry are polarized along vector
b. 22 TO modes with Bu symmetry are polarized within the
a-c plane. The dielectric tensor elements for Y2SiO5 are then

FIG. 1. (a) Unit cell of Y2SiO5, crystallographic vectors (a, b, c),
principal directions of the biaxial optical indicatrix (D1, D2, D3) as
defined in Ref. [1] (D3 is collinear with b), and sample Cartesian
coordinate system (x, y, z) used in this work. (b) View onto the
a-c plane along vector b, which points into the plane. The sample
Cartesian coordinate system (x, y, z) aligns with −D2, −D1, and
b as shown. The laboratory Cartesian coordinate system (x̂, ŷ, ẑ)
is associated with the ellipsometer instrument (not shown), where a
given sample surface is parallel to plane x̂-ŷ and at ẑ = 0, the plane
of incidence is parallel x̂.

rendered as

εxx = ε∞,xx +
22∑
l=1

�
Bu

TO,l cos2 αTO,l , (8a)

εxy = ε∞,xy +
22∑
l=1

�
Bu

TO,l sin αTO,l cos αTO,l , (8b)

εyy = ε∞,yy +
22∑
l=1

�
Bu

TO,l sin2 αTO,l , (8c)

εzz = ε∞,zz +
23∑
l=1

�
Au

TO,l , (8d)

εxy = εyx, (8e)

εxz = εzx = εzy = εyz = 0, (8f)

where angle αTO,l denotes the orientation of the TO eigendi-
electric displacement vectors with Bu symmetry relative to
crystal vector a.

7. Dielectric loss function tensor model for Y2SiO5

23 LO modes with Au symmetry are polarized along the
vector b. 22 LO modes with Bu symmetry are polarized within
the a-c plane. The dielectric loss tensor elements for Y2SiO5

are then rendered as

ε−1
xx = ε−1

∞,xx +
22∑
l=1

�
Bu

LO,l cos2 αLO,l , (9a)

ε−1
xy = ε−1

∞,xy +
22∑
l=1

�
Bu

LO,l sin αLO,l cos αLO,l , (9b)
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TABLE III. DFT results for phonon modes with Bu symmetry in
units of reciprocal centimeters (cm−1), debyes (D), angstroms (Å),
angular degrees (◦), and atomic mass units (amu). Angles are given
with respect to the crystallographic direction a.

ωTO,l A2
TO,l αTO,l ωLO,l A2

LO,l αLO,l

Mode (cm−1) [(D/Å)2/amu] (◦) (cm−1) [(D/Å)2/amu] (◦)

1 966.11 84.81 29.47 1045.30 132.5 27.6
2 891.27 32.54 135.54 951.88 118.4 120.3
3 856.41 44.44 116.15 875.34 7.638 97.8
4 853.56 1.90 105.12 853.72 0.0524 49.2
5 558.53 32.50 49.40 631.63 65.78 51.9
6 527.01 10.12 126.41 558.53 32.41 139.3
7 502.50 39.43 43.20 527.01 10.12 36.4
8 493.58 3.30 104.31 501.33 7.343 132.9
9 446.32 14.93 108.07 478.09 13.51 133.5
10 406.86 4.07 61.75 425.91 10.34 160.2
11 380.05 24.87 156.16 406.86 4.071 151.4
12 323.99 38.31 100.56 364.45 6.495 83.0
13 309.05 25.65 175.48 323.99 38.29 10.5
14 303.80 2.43 67.12 304.92 0.0905 76.3
15 268.70 4.92 69.25 274.71 0.8969 83.8
16 244.06 31.34 131.25 268.36 1.739 158.5
17 233.69 12.55 13.39 244.06 31.19 41.2
18 219.59 8.19 30.63 224.05 0.1918 44.7
19 166.79 1.15 107.14 168.38 0.1233 96.5
20 150.81 2.24 79.28 153.95 0.1943 73.4
21 108.39 0.85 145.34 110.01 0.0722 148.1
22 43.66 0.98 71.93 49.12 0.1266 67.2

ε−1
yy = ε−1

∞,yy +
22∑
l=1

�
Bu

LO,l sin2 αLO,l , (9c)

ε−1
zz = ε−1

∞,zz +
23∑
l=1

�
Au

LO,l , (9d)

ε−1
xy = ε−1

yx , (9e)

ε−1
xz = ε−1

zx = ε−1
zy = ε−1

yz = 0, (9f)

where angle αLO,l denotes the orientation of the TO eigendi-
electric displacement vectors with Bu symmetry relative to
crystal vector a.

8. Complementary parameter analyses

Equations (8) and (9), augmented with response functions
in Eq. (4), are fully complementary, and one set of parameters
(ε∞, ATO,l ωTO,l , γTO,l , �TO,l , êTO,l) is in principle sufficient to
determine the other set of parameters (ε−1

∞ , ALO,l ωLO,l , γLO,l ,
�LO,l , êLO,l). Analysis of experimental dielectric function data
using Eq. (8) directly permits access to TO mode parameters,
including their orientations. Analysis of experimental dielec-
tric loss function data using Eqs. (9) directly permits access
to LO mode parameters, including their orientations. The
immediate advantage of having wavelength-by-wavelength
determined data for a dielectric function tensor available is to
also have its inverse then available. The dielectric (loss) tensor
elements reveal peak maxima in the imaginary parts that are
directly associated with TO (LO) modes. Hence, one can read

TABLE IV. Same as Table III for Au symmetry.

ωTO,l A2
TO,l ωLO,l A2

LO,l

Mode (cm−1) [(D/Å)
2
/amu] (cm−1) [(D/Å)

2
/amu]

1 956.65 1.80 977.36 2.11
2 904.34 48.11 952.03 0.81
3 872.12 25.36 881.09 0.39
4 864.40 1.38 864.66 0.05
5 589.15 12.84 615.54 1.14
6 546.78 6.14 555.53 0.51
7 526.02 0.06 526.11 0.06
8 499.19 0.80 501.68 0.38
9 426.55 13.91 473.15 1.08
10 418.49 0.58 418.86 0.06
11 379.78 0.73 400.33 0.53
12 354.79 26.59 379.03 0.09
13 339.33 14.90 344.73 0.11
14 315.95 5.49 319.40 0.12
15 274.18 1.90 279.51 0.25
16 250.40 14.03 266.87 0.23
17 229.70 2.77 233.56 0.12
18 218.35 10.43 224.89 0.10
19 208.79 0.02 208.81 0.01
20 182.75 8.59 190.28 0.13
21 154.73 1.14 155.86 0.05
22 112.79 0.45 113.64 0.04
23 104.07 0.49 104.91 0.04

by “eye inspection” already from raw data where to anticipate
TO and LO mode parameters.

Mayerhöfer et al. determined LO mode frequencies from
modeling reflectance data of anisotropic materials parametriz-
ing the dielectric function tensor using its inverse and the
LO mode parameter set [60]. We have previously shown that
LO mode frequencies in monoclinic materials can be deter-
mined by simply observing maxima in the inverse dielectric
tensor [29]. We have also shown that including this inverse
tensor into the model analysis yields improved sensitivity to
anharmonic broadening parameters [33]. In this work, we
use both approaches and determine both sets of parameters,
simultaneously analyzing dielectric function tensor and inverse
dielectric function data.

D. Generalized ellipsometry

Generalized ellipsometry has been successfully used pre-
viously to investigate anisotropic materials including biaxial,
uniaxial, and multilayered materials as well as metamaterials
[57–59,61–77]. Recently, it has been applied to monoclinic
materials as well [29,30,32,33,78–81]. Following the same
approach used previously for β-Ga2O3 [29,32] and CdWO4

[33], data from multiple samples, multiple azimuths, and
multiple angles of incidence are investigated and analyzed
simultaneously for Y2SiO5.

1. Mueller matrix formalization

In generalized ellipsometry, the Mueller matrix can be
used to describe interaction of electromagnetic plane waves
with anisotropic samples. Real-valued 4 × 4 Mueller matrix
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FIG. 2. Renderings of TO phonon modes in Y2SiO5 with Au and Bu symmetry as labeled for each mode and presented in the order of
decreasing frequency (wave number). The phonon mode parameters calculated using DFT are presented in Tables III and IV.

elements are obtained which connect the Stokes vector com-
ponents before and after interaction with the sample,

⎛
⎜⎝

S0

S1

S2

S3

⎞
⎟⎠

output

=

⎛
⎜⎝

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎞
⎟⎠

⎛
⎜⎝

S0

S1

S2

S3

⎞
⎟⎠

input

,

(10)
with the Stokes vector components defined by S0 = Ip + Is ,
S1 = Ip − Is , S2 = I45 − I−45, S3 = Iσ+ − Iσ−. Here, Ip, Is ,
I45, I−45, Iσ+, and Iσ− denote the intensities for the p-
, s-, +45◦, −45◦, right-handed, and left-handed circularly
polarized light components, respectively [82].

2. Wavelength-by-wavelength analysis

In order to extract physical parameters, data must be
analyzed through a best-match model calculation procedure.
We apply a half-infinite, two-phase model to Y2SiO5 where
two half-infinite media, ambient (air) and monoclinic Y2SiO5,
are separated by the planar surface of the crystal [82–86]. In
this approach, the Euler angles describing the orientation of
the crystal axes and the elements of the monoclinic dielectric
tensor are considered free parameters. The dielectric function
tensor elements are expressed as wavelength-dependent model
functions, thereby allowing for determination of the tensor
elements in the so-called wavelength-by-wavelength model
analysis approach.
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FIG. 3. Renderings of LO phonon modes in Y2SiO5 with Au and Bu symmetry as labeled for each mode and presented in the same order
as TO modes in Fig. 2. The phonon mode parameters calculated using DFT are presented in Tables III and IV.

We establish two Cartesian coordinate systems such that
our sample coordinate system may be related to the crystallo-
graphic axes or the so-called principle directions of the biaxial
optical indicatrix of Y2SiO5 [87]. The laboratory coordinate
system is determined by the ellipsometer instrument and is
defined by the sample holder and plane of incidence. The
sample surface is defined as the x̂-ŷ plane, the plane of
incidence is parallel to x̂, and the sample normal defines the ẑ

axis which points into the sample. We assign the sample system
(x,y,z) to coincide with the axes of the optical indicatrix (D1,
D2, D3), as defined in Ref. [1]. Note that D3 coincides with −b
(Fig. 1), where we follow the notation given in Ref. [1]. Due
to the monoclinic symmetry the dielectric tensor ε for Y2SiO5

contains shear elements and with the choice of coordinates
above can now be expressed as

ε =
⎛
⎝

εxx εxy 0
εxy εyy 0
0 0 εzz

⎞
⎠. (11)

An Euler angle rotation can be applied to ε in order to
describe the crystallographic surface and azimuthal orientation
of the sample. The sample azimuth, ϕ, defined by an in-
plane rotation with respect to sample normal, describes the
mathematical rotation of a model dielectric function tensor of
calculated data when compared with measured data taken at
different azimuthal orientations.
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FIG. 4. Experimental (dotted, green lines) and best-match model calculated (solid, red lines) normalized Mueller matrix data obtained from
a (D1 × D2 × b) surface at three representative sample azimuth orientations [P1: ϕ = 3.6(3)◦, P2: ϕ = 48.6(3)◦, P3: ϕ = 93.6(3)◦]. Data were
taken at three angles of incidence (�a = 50◦,60◦,70◦). Equal Mueller matrix data, symmetric in their indices, are plotted within the same panels
for convenience. Vertical lines indicate positions of TO (solid lines) and LO (dotted lines) modes with Bu symmetry (blue) and Au symmetry
(brown). Due to a lack of compensator in the FIR spectral region, fourth-row elements are only available from the IR instrument limited to
approximately 230 cm−1 and are plotted in the symmetric tensor panel locations, i.e., as the fourth column, for convenience. Note that all
elements are normalized to M11. The remaining Euler angle parameters are θ = 0.2(4) and ψ = −0.1(5) consistent with the crystallographic
orientation of the (D1 × D2 × b) surface. The inset depicts schematically the sample surface, the plane of incidence, and the orientation of
direction b in P1.

In a wavelength-by-wavelength approach, calculated
Mueller matrix data are compared to experimentally mea-
sured Mueller matrix data. Wavelength-dependent dielectric
function tensor elements εxx, εyy, εxy, and εzz are varied
in order to minimize the mean-squared error (ξ ) function
[57,58,85,88,89]. Analysis of all samples, azimuthal orienta-
tions, and angles of incidence is performed simultaneously for
all independent wavelengths yielding a single set of complex-
valued, wavelength-dependent εxx, εyy, εxy, and εzz (polyfit).
During the polyfit, an independent set of Euler angle param-
eters for each sample is utilized to describe the orientation of
the principle directions and crystallographic axes at the first
azimuthal position acquired.

3. Model analysis procedure

In order to reduce correlation and improve sensitivity to
model parameters, multiple data sets are fitted simultaneously
with multiple models. The model process is detailed below for
the a-c plane with three parts. The model procedure is repeated
independently for modes along b.

Model 1. Equations (6) and (7) are used to best-match
model calculate the wavelength-by-wavelength determined
determinants of ε and ε−1, respectively, finding parameters
ωTO,l , γTO,l , ωLO,l , γLO,l , and ε∞. The best-match model
calculated functions are represented by black solid lines in
Fig. 7.
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FIG. 5. Same as Fig. 4 for the (b × D1 × D2) sample at azimuth orientation P1: ϕ = −0.2(1)◦, P2: ϕ = 44.7(9)◦, P3: ϕ = 89.79◦. θ = 89.(9)
and ψ = −1.5(7), consistent with the crystallographic orientation of the (b × D1 × D2) surface. Note that in position P1, direction b, which is
parallel to the sample surface in this crystal cut, is aligned almost perpendicular to the plane of incidence. Hence, the monoclinic plane with a
and c is nearly parallel to the plane of incidence, and as a result almost no conversion of p to s polarized light occurs and vice versa. As a result,
the off-diagonal block elements of the Mueller matrix are near zero. The inset depicts schematically the sample surface, the plane of incidence,
and the orientation of crystal vector b, shown approximately for position P1.

Model 2. In addition to best-match model calculated
determinants of ε and ε−1, the individual wavelength-by-
wavelength determined dielectric tensor elements εxx, εxy, and
εyy are best-match model calculated using Eqs. (8a), (8b), and
(8c), respectively, and the anharmonic Lorentzian oscillator
functions in Eq. (4) to determine the additional TO mode
parameters ATO,l , �TO,l , and αTO,l . In addition, the numerically
calculated inverse of the model-calculated dielectric function
tensor is matched with the wavelength-by-wavelength deter-
mined inverse of the dielectric function tensor. The best-match
model calculated functions are represented by red solid lines
in Figs. 6 and 8.

Model 3. In addition to best-match model calculated
determinants of ε and ε−1, the individual wavelength-by-
wavelength determined inverse dielectric tensor elements ε−1

xx ,

ε−1
xy , and ε−1

yy are best-match model calculated using Eqs. (9a),
(9b), and (9c), respectively, and the anharmonic Lorentzian
oscillator functions in Eq. (4) to determine the additional
LO mode parameters ALO,l , �LO,l , and αLO,l . In addition, the
numerically calculated inverse of the model-calculated inverse
dielectric function tensor is matched with the wavelength-by-
wavelength determined dielectric function tensor. The best-
match model calculated functions are represented by cyan solid
lines in Figs. 6 and 8.

III. EXPERIMENT

Three single-crystal samples of Y2SiO5 purchased from
Scientific Materials Corporation were investigated. The sample
dimensions were 10 mm × 10 mm × 1 mm. Investigated crystal
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orientations were D1 × D2 × b, b × D2 × D1, and D1 × b ×
D2, where primary axes D1 and D2 are defined in relation to
the crystal vectors as described in Ref. [1] and shown in Fig. 1.
All model calculations were performed using WVASE32 (J.
A. Woollam Co., Inc.).

Mueller matrix data were obtained from each sample
surface at five sample azimuth orientations, rotated clockwise
in 45◦ increments. Data were taken at three angles of incidence
(�a = 50◦,60◦,70◦). Due to a lack of compensator in the FIR
spectral region, fourth-row elements are only available from
the IR instrument limited to approximately 250 cm−1. All data
was used for analysis but only 3 azimuthal positions for each
surface are discussed and shown here. Measurements from
azimuthally rotated orientations 180◦ apart are identical and
no nonreciprocity effects were observed.

IV. RESULTS AND DISCUSSION

A. DFT phonon calculations

The phonon frequencies and transition dipole components
were computed at the � point of the Brillouin zone using den-
sity functional perturbation theory [90]. The parameters of the
TO modes were taken directly from the �-point calculations.
The parameters of the LO modes were obtained by setting a
small displacement from the � point. For Au symmetry modes
this displacement was in the direction of the crystal direction
b. For the Bu modes, the entire a-c plane was probed with a
fine step of 1◦, and the parameters of the LO modes were taken
at the direction for which the angular dependence of the mode
frequency for each Bu mode had its maximum value.

The results of the phonon mode calculations for all long-
wavelength active modes with Bu and Au symmetry (ωTO,l ,
ATO,l , αTO,l , ωLO,l , ALO,l , αLO,l) are listed in Tables III and IV.
Note that for modes with Au symmetry, all eigenvectors are
oriented along direction b and thus αTO,LO,l are not needed.
Values for αTO,LO, for modes with Bu symmetry are counted
relative to crystal direction a within the a-c plane. Renderings
of atomic displacements for each mode were prepared using
XCrysDen [91] running under Silicon Graphics Irix 6.5, and
are shown in Figs. 2 and 3.

B. Mueller matrix analysis

Figures 4 and 5 show representative experimental and best-
match model calculated Mueller matrix data for two of the three
surfaces investigated in this work, namely the (D1 × D2 × b)
and (b × D1 × D2) surfaces. The insets in Figs. 4 and 5
show schematically the crystal direction b with respect to the
sample surface, and the plane of incidence is also indicated.
Individual panels are shown for each Mueller matrix element
and are arranged according to Mueller matrix indices. Within
each panel, data from 3 different azimuthal positions (P1,
P2, and P3), each 45◦ rotated clockwise, each with 3 angles
of incidence (50◦, 60◦, and 70◦), are presented. Data from
additional positions measured are not shown for brevity.

It is observed by experiment as well as by model calcu-
lations that all Mueller matrix elements are symmetric, i.e.,
Mij = Mji ; therefore, symmetric elements, i.e., from upper
and lower diagonal parts of the Mueller matrix, are plotted
within the same panels. Therefore, only panels from the upper

part of a 4 × 4 matrix arrangement is presented, and because all
data obtained are normalized to element M11, the first column
does not appear in this arrangement. Element M44 cannot be
obtained in our current instrument configuration due to the lack
of a second compensator and is therefore not presented. Data
are shown for wave number range from 40 cm−1 to 1200 cm−1,
except for row M4j = Mj4 which only contains data from
approximately 250 cm−1 to 1200 cm−1 because the fourth
row is unavailable with our FIR instrumentation. Note that
the fourth-row data are plotted in the fourth column of Figs. 4
and 5 for convenience. All other panels show data obtained
within the FIR range (40 cm−1 to 500 cm−1) using our FIR
instrumentation and data obtained within the IR range (500
cm−1 to 1200 cm−1) using our IR instrumentation.

Strong anisotropy is noted in Y2SiO5 by the nonzero
contributions in off-block diagonal elements (M13, M23, M14,
and M24) and a strong dependence on azimuthal orientation is
also apparent by inspection of the Mueller matrix data. Another
important observation from the Mueller matrix data is that at P1
for the (b × D1 × D2) surface in Fig. 5, where the b direction is
parallel to the sample surface and perpendicular to the plane of
incidence, the off-block diagonal elements are very nearly zero.
This is because the monoclinic plane is parallel to the plane of
incidence in this orientation and therefore there is no mode con-
version of s-polarized light to p-polarized light and vice versa.

All data sets, while unique, share similar characteristic
features at specific energies, which are indicated by vertical
lines. Below, we identify these vertical lines as frequencies
of all TO and LO phonon mode with Au and Bu symmetries.
Analyses of all data sets were performed simultaneously, where
for each wavelength up to 792 independent data points from the
multiple samples, azimuthal positions, and angles of incidence
are included in the polyfit. Only 17 independent parameters
are included as variables in this so-called wavelength-by-
wavelength analysis, including the 8 real and imaginary parts
of the dielectric tensor elements (εxx, εyy, εxy, and εzz) as
well as 3 sets of wavelength-independent Euler angles to
describe the sample surface and orientation. The resulting
Mueller matrix rendered from this polyfit analysis is shown
in Figs. 4 and 5 as red solid lines, and resulting real and
imaginary parts of the dielectric tensor elements are given
in Fig. 6 as green dotted lines. We find excellent agreement
between our measured experimental and model-calculated
Mueller matrix data, and the Euler angles determined by this
analysis are consistent with the anticipated sample surfaces
and crystallographic orientations. We note that the increase
in noise for the dielectric function spectra towards longer
wavelengths is caused by reduction of light source intensity
and hence by reduction of signal level. No free charge carriers
are present within the samples and the purely dielectric samples
also possess very low reflectivity further reducing the signal
level in the ellipsometry measurements.

C. Dielectric tensor analysis

Real and imaginary parts of the dielectric tensor elements
determined by the wavelength-by-wavelength polyfit are given
in Fig. 6 as green dotted lines for εxx, εxy, εyy, and εzz.
One can then translate these into the inverse dielectric tensor
shown as green dotted lines in Fig. 8 for ε−1

xx , ε−1
xy , ε−1

yy ,
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FIG. 6. Dielectric function tensor element εxx (a), εxy (b), εyy (c), and εzz (d). Green dotted lines indicate results from wavelength-by-
wavelength best-match model regression analysis matching the experimental Mueller matrix data shown in Figs. 4 and 5. Solid red lines are
obtained from best-match model line-shape analysis using Eqs. (8) with Eq. (4) fitted to the dielectric tensor elements. Solid cyan lines are
obtained from best-match model line-shape analysis using a second set of Eqs. (8) with Eq. (4) fitted to the inverse dielectric tensor elements.
Vertical lines in panel group [(a), (b), (c)] and in panel (d) indicate TO frequencies with Bu (blue) and Au (brown) symmetry, respectively.
Vertical bars indicate DFT-calculated long-wavelength transition dipole moments in atomic units projected onto axes x, y, and z as well as onto
the shear plane xy.

and ε−1
zz , and into the determinant (εxxεyy − ε2

xy) and inverse
determinant ((εxxεyy − ε2

xy)−1) as shown by green dotted lines
in Fig. 7. From these, preliminary observations can be made for
phonon mode properties. As we have previously reported, TO
mode frequencies can be found from maxima in imaginary
parts of the dielectric function tensor elements as well as
the determinant [30] as shown in Figs. 6 and 7 indicated by
solid vertical lines. Likewise, LO mode frequencies can be
determined from maxima of the imaginary parts of the inverse
dielectric function tensor and the inverse of the determinant
[33] as seen in Figs. 7 and 8 indicated by dotted vertical
lines. We note that panels (a), (b), and (c) in Figs. 6 and
8 share common frequencies at which maxima occur from
which we identify 22 TO modes and a corresponding 22 LO
modes with Bu symmetry, respectively. We also note that the
imaginary part of εxy and ε−1

xy can be positive as well as negative
extrema at Bu TO and LO mode frequencies, respectively,
which is due to the respective eigendielectric displacement
unit vector orientation relative to direction a. From Eq. (8b), it
is seen that the imaginary part of εxy is negative when αTO,l is
within {0 . . . −π} and positive when αTO,l is within {0 . . . π}.
Therefore, for example, we observe from experiment that Bu

TO modes labeled 2, 3, 4, 6, 9, 11, 12, 13, 15, 17, 18, 19, and
21 are all oriented with negative angle towards a.

D. Phonon mode analysis

1. Modes with Bu symmetry in the a-c plane

TO mode parameter determination. Solid red lines in Figs. 6
and 8 indicate the resulting best-match model calculations
obtained from Eq. (8) using a set of anharmonically broadened
Lorentzian oscillators. We find excellent agreement between
our wavelength-by-wavelength and model-calculated ε and
ε−1. All best-match TO model parameters are summarized
in Table V including amplitude (ATO,l), frequency (ωTO,l),
broadening (γTO,l), anharmonic broadening (�TO,l), and eigen-
vector direction (αTO,l) for all TO modes (l = 1 . . . 22) with
Bu symmetry. Frequencies of the TO modes are indicated by
solid vertical blue lines in Figs. 4, 5, 6, and 7 which align with
the features observed in the data and the extrema seen in the
imaginary part of the dielectric tensor.

TO mode parameters determined by Höfer et al. [26] are
included in Table V for comparison. While we do expect
22 modes with Bu symmetry from calculations, and they
do identify 22 features, it can be seen that several features
determined by Höfer et al. do not correspond with modes
determined by our analysis, specifically features identified
at 974.3, 539.6, 461.5, and 231.2 cm−1. In addition, several
modes determined in our work are not identified by Höfer et al.,
specifically, modes 4, 14, 21, and 22.
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FIG. 7. (a) Real and imaginary parts of the coordinate-invariant generalized dielectric function, εxxεyy − ε2
xy, along with its inverse (b),

(εxxεyy − ε2
xy)−1. Best-match model calculated data (red, solid lines) calculated from the BUL form agree excellently with data determined

from a wavelength-by-wavelength analysis. TO and LO mode parameters are determined independently of their individual polarization and
amplitudes. Frequencies of TO modes are indicated with solid blue lines and frequencies of LO modes are indicated by dotted blue lines.

TO eigendielectric displacement vectors. Figure 9 displays
a vector representation of the amplitude and polarization direc-
tion parameters (ABu

TO,l and αTO,l) within the a-c plane. Results

from the IR/FIR GSE model dielectric function, panel (a),
are compared with long-wavelength transition dipole moments
calculated from DFT, panel (b). Remarkably good agreement is

FIG. 8. Same as for Fig. 6 but for the inverse dielectric tensor. Vertical lines in panel group [(a), (b), (c)] and in panel (d) indicate LO
frequencies with Bu (blue) and Au (brown) symmetry, respectively.
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TABLE V. Phonon mode parameters with Bu symmetry obtained from best-match model analysis of tensor element spectra ε and ε−1,
using anharmonic broadened Lorentz oscillator functions in Eq. (4) as well as by utilization of the generalized coordinate-invariant form of the
dielectric function [30]. The last digit, which is determined within the 90% confidence interval, is indicated with parentheses for each parameter.
Angles are given with respect to the crystallographic direction a. Frequencies of TO modes from Ref. [26] are included for comparison.

ωTO ωLO γTO γLO ATO �TO αTO ALO �LO αLO v̄j

Mode (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (◦) (cm−1) (cm−1) (◦) (Ref. [26])

974.3
1 970.5(9) 1050.8(0) 9.0(6) 5.8(3) 627.(2) 14.(2) 28.8(7) 251.(1) 0.3(6) 27.2(6) 970.7
2 902.1(3) 972.1(1) 6.5(1) 8.1(1) 449.(8) −8.(0) 133.(0) 240.(5) −0.9(2) 119.5(5) 902.5
3a 876.(0) 877.(0) 5.(0) 5.(2) 99.(7) 0.(0) 111.(3) 7.(4) 0.(0) 14(9) 871.0
4 869.9(0) 885.(2) 8.8(1) 7.(9) 42(0) 13.(7) 112.(7) 52.(4) 0.2(4) 92.(2)
5 567.8(8) 631.4(9) 8.(0) 13.1(8) 294.(0) 4.(0) 40.(5) 173.(9) −2.8(0) 52.4(1) 567.9
6 540.2(6) 573.1(2) 6.(7) 7.1(6) 246.(9) 5.(2) 108.5(7) 125.(5) −0.8(0) 135.0(3) 540.2

539.6
7 515.3(5) 546.(1) 8.0(4) 10.(5) 44(8) −1(2) 52.(2) 60.(3) 0.0(8) 13.(3) 514.0
8 507.7(6) 516.6(6) 8.(1) 8.(3) 19(9) −0.(8) 3.(4) 50.(0) −0.3(5) 140.(9) 507.9
9 460.9(3) 479.6(7) 8.(7) 9.(6) 205.(4) −3.(5) 100.(0) 75.(6) 0.5(3) 130.(7) 462.3

461.5
10 412.(7) 437.8(4) 7.(9) 7.2(9) 16(1) −(9) 6(5) 88.(2) −0.7(6) 152.(4) 413.1
11 379.7(1) 418.(6) 5.0(9) 10.(3) 334.(6) 2.(2) 15(6) 32.(5) −0.6(0) 47.(4) 379.5
12 314.5(8) 360.3(2) 7.(0) 7.7(0) 3(2)5 −3(0) 10(2) 58.(3) 0.2(3) 86.(9) 313.4
13 312.1(0) 343.0(6) 6.2(8) 5.(9) 37(0) (8) 162.(7) 49.9(6) 0.0(5) 21.(2) 312.6
14 312.(2) 313.(2) 7.(3) 6.(9) 2(6)0 1(8) 72.(2) 2.7(8) 0.0(1) 23(2)
15 266.0(1) 273.2(7) 4.1(7) 4.(7) 176.(1) −(4) 92.(4) 19.8(1) −0.0(6) 82.(3) 265.8
16 233.5(9) 253.6(0) 3.6(0) 6.8(2) 267.(8) −1(4) 84.(7) 36.1(2) −0.26(4) 178.(8) 231.3

231.2
17 226.0(9) 246.9(3) 4.6(8) 4.3(1) 238.(7) 2(9) 14(8) 21.0(2) −0.02(4) 78.(5) 225.4
18 216.4(7) 223.9(2) 4.5(5) 5.6(7) 339.(4) −5(2) 177.8(1) 6.7(3) 0.03(7) 28.(7) 217.1
19 169.6(2) 172.1(8) 1.5(8) 2.1(0) 98.(9) −4.(9) 104.(1) 8.9(5) −0.04(9) 94.(5) 170.9
20 144.9(8) 148.4(2) 2.0(8) 2.0(1) 106.(0) −0.(3) 83.(9) 9.4(3) 0.01(5) 78.(9) 145.0
21 110.4(2) 112.2(2) 1.5(6) 1.8(6) 70.(4) −2.(7) 139.(3) 5.7(6) −0.02(4) 141.(5)
22 57.8(9) 61.7(1) 2.1(2) 1.6(9) 65.(3) 3.(9) 64.(1) 7.0(4) 0.04(8) 61.(5)

aMode parameter fit in a local region, held constant in full spectral fit procedure.

seen between the GSE and DFT resulting eigenvectors. Note
that the eigenvector provides an additional mode identifica-
tion mechanism. Experimentally determined modes can be
compared with and sorted by calculated modes not only by
frequency and amplitude, but also by orientation. Hence, in
some instances here, modes observed by GSE and identified
by amplitude and direction with a mode calculated by DFT may
appear out of frequency sequence, that is, at slightly smaller
or slightly larger frequency than predicted by DFT. Thereby, a
mode may be found experimentally at a different mode index
than predicted by the sequence of DFT-calculated frequencies.
This occurs here for modes 3 and 4 as well as for modes 17 and
18. The experimental TO mode vector orientations agree within
25◦ with corresponding calculated modes with the exception of
modes 8, 16, 17, and 18. Mode 8 is has the largest disagreement
(GSE nearly perpendicular to DFT) which could be explained
by its low amplitude and relatively large broadening. It also
appears on the shoulder of a much larger nearby mode in GSE
data, decreasing sensitivity to mode 8 parameters.

LO mode parameter determination. Cyan solid lines in
Figs. 8 and 6 indicate the resulting best-match model calcu-
lations obtained from Eq. (8) using a second independent set
of anharmonically broadened Lorentzian oscillators. We find
excellent agreement between our wavelength-by-wavelength
and model-calculated ε−1 and ε. All best-match LO model

parameters are summarized in Table V including amplitude
(ALO,l), frequency (ωLO,l), broadening (γLO,l), anharmonic
broadening (�LO,l), and eigenvector direction (αLO,l) for all
LO modes (l = 1 . . . 22) with Bu symmetry. Frequencies of
the LO modes are indicated by dotted vertical blue lines in
Figs. 4, 5, 7, and 8 which align with the features observed
in the data and the extrema seen in the imaginary part of the
inverse dielectric tensor.

LO eigendielectric displacement vectors. Figure 10 displays
a vector representation of the amplitude and polarization
direction parameters (ABu

LO,k and αLO,k) projected onto the a-c
plane. Results from the IR/FIR GSE model dielectric function,
panel (a), are compared with long-wavelength transition dipole
moments calculated from DFT, panel (b). Remarkably good
agreement is seen between the GSE and DFT resulting LO
eigenvectors. Interestingly, while some LO mode eigenpolar-
ization directions do not deviate very much from their TO
counterparts (for example mode 1 with αTO,1 = 28.8◦ and
αLO,1 = 27.2◦), most differ significantly.

2. Modes with Au symmetry along the crystal direction b

Resulting mode parameters are described in Table VI and
dielectric function and inverse dielectric function are given
in Figs. 6(d) and 8(d), respectively. Red solid lines show the
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FIG. 9. (a) Schematic representation of the eigendielectric dis-
placement vectors with GSE analysis determined amplitude A

Bu

TO,l

and orientation angle αTO,l (with respect to the crystal vector a) of TO
modes with Bu symmetry within the a-c plane. (b) DFT-calculated
long-wavelength transition dipoles (intensities) of TO modes with Bu

symmetry.

resulting model-calculated dielectric function from Eq. (8)
using a set of 23 anharmonic Lorentzian oscillators [Eq. (4)]
for the Au symmetry TO modes. Similarly, the solid cyan
lines indicate the resulting model-calculated dielectric function
from Eq. (8) using a separate set of 23 anharmonic Lorentzian
oscillators [Eq. (4)] for the Au symmetry LO modes. Mode
parameters of LO and TO frequencies and broadenings were
also determined simultaneously using the BUL form Eq. (6)
shown in black.

Due to many modes appearing in some narrow frequency
regions, sensitivity to separate mode parameters reduces.
Contributions from weak modes are easily subsumed by con-
tributions from strong modes, necessitating several localized
spectral best-match model analyses (modes 3, 4, 10, 21, and
23) and some modes required manual setting of parameters
(modes 12, 21, and 23). Frequencies of TO modes with Au

FIG. 10. (a) Schematic representation of the eigendielectric dis-
placement loss vectors with GSE analysis determined amplitude A

Bu

LO,l

and orientation angle αLO,l (with respect to the crystal vector a) of LO
modes with Bu symmetry within the a-c plane. (b) DFT-calculated
long-wavelength transition dipoles (intensities) of LO modes with Bu

symmetry.

symmetry are indicated by vertical solid brown lines in Figs. 4,
5, and 6 while frequencies of LO modes with Au symmetry are
indicated by vertical dotted brown lines in Figs. 4, 5, and 8.

Mode frequencies identified by Höfer et al. are also included
in Table VI for comparison, where modes 3, 7, 10, 11, 13, 17,
22, and 23 remained unresolved.

3. TO-LO rule

The TO-LO rule can best be inspected within the BUL
form in Eq. (6). If a switch occurs within a set of as-
cending frequencies ωTO,l < ωLO,l < ωTO,l+1 < ωLO,l+1 . . . ,
for example, ωTO,l < ωTO,l+1 < ωLO,l < ωLO,l+1 . . . , then the
BUL form produces negative imaginary parts in the spectral
region between ωTO,l+1 . . . ωLO,l . This is obviously unphysical
for a dielectric function, which can be measured along a
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TABLE VI. Same as for Table V but for phonon mode parameters with Au symmetry.

ωTO ωLO γTO γLO ATO �TO ALO �LO v̄j

Mode (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (Ref. [26])
1 960.0(6) 988.5(0) 6.(4) 9.5(0) 9(4) −1.(2) 238.(1) −0.(5) 960.6
2 914.2(8) 956.(7) 5.8(4) 5.(9) 43(3) −8.(9) 5(7) −0.(1) 914.4
3 887.1(6)b 897.5(4)b 7.8(9)b 4.9(2)b 30(9)b 9.(9)b 38.9(4)b 0.18(4)b

4 883.1(6)b 884.8(8)b 5.6(0)b 6.5(6)b 28(4)b −0.(1)b 8.0(4)b −0.05(5)b 884.9
5 593.(9) 620.5(0) 7.(7) 14.2(5) 22(6) −1(0) 121.(8) −1.(6) 592.8
6 560.(1) 570.(8) 12.(4) 12.(6) 18(9) −1(6) 5(1) 1.(3) 561.1
7 54(6) 54(8) 1(8) 1(3) 1(2)0 1(7) 1(2) 0.(9)
8 515.(0) 516.(8) 6.(8) 6.(4) 6(6) 1.(9) 2(2) 0.(0) 510.9
9 439.8(4) 473.6(5) 7.(9) 13.3(2) 214.(6) −13.(1) 10(7) −1.(3) 437.1
10 411.(9) 412.(6) 2(8) 2(7) 3(9) −2.(4) (7) 1.(6)
11 40(3) 410.0(1) 1(5) 6.(9) 1(6) −0.(1) 72.(6) 0.(8)
12 349.6(5) 40(3) 8.2(2) 1(4) 38(2) 1(2) 10a −(2) 345.0
13 339.(5) 341.(7) 7.(1) 8.(1) 19(8) −2(4) 6.(8) −0.3(1)
14 309.9(2) 317.1(0) 6.(6) 5.(7) 20(8) (6) 19.(3) 0.0(7) 308.8
15 270.(1) 277.7(8) 3.(6) 3.(9) 9(0) −(3) 29.(4) 0.0(5) 269.9
16 250.5(2) 266.(6) 3.8(2) 2.(7) 29(4) (9) 16.(0) −0.0(7) 248.8
17 225.(3) 229.5(3) 3.(7) 2.(3) 1(1)0 (2)0 12.(2) 0.0(1)
18 223.(5) 224.(3) 3.(7) 2.(3) 1(2)0 −(1)0 2.(2) −0.0(2) 223.3
19 201.6(2) 207.(0) 3.4(5) 3.(1) 12(3) 1(0) 14.(1) −0.0(4) 200.9
20 188.8(3) 196.6(8) 2.3(2) 3.(8) 249.(4) −2(0) 9.5(2) −0.04(2) 188.5
21 154.(1)b 154.(5)b 2a 2a 4(3)b (9)b (3)b 0.0(6)b 169.9
22 114.(2) 115.(0) 2.(1) 2.(5) 4(3) −(3) 3.(5) −0.0(2)
23 70a 73a 5a 2a 4(6)b 0.(8)b (3)b 0.0(6)b

aManually set parameter held constant throughout fitting procedure.
bParameter fit in a local region, held constant in full spectral fit procedure.

certain, fixed coordinate direction. However, the determinant
function in a low-symmetry material does not represent a
directly measurable quantity. Rather, it serves as a spectral
indicator for the frequencies of TO and LO modes, as shown
in this paper. Furthermore, and accordingly, the determinant
produces negative imaginary parts when the order of TO
and LO modes within the monoclinic plane is such that the
TO-LO rule is broken—specifically, between Bu modes 17 →
16, 14 → 13, 11 → 10, 8 → 7, 7 → 6, 6 → 5, 4 → 3, and
2 → 1. Previously we have observed this TO-LO rule broken
for monoclinic β-Ga2O3 [29] but not for monoclinic CdWO4

[33]. In these cases, when a second TO mode is observed
before the next subsequent LO mode, the imaginary part of
the determinant is observed to go negative and the imaginary
part of the inverse determinant is observed to go positive. Note
that the TO-LO rule holds true for all Au modes.

4. High-frequency and static dielectric constant

Static and high-frequency dielectric constants obtained in
this work are summarized in Table VII. Static dielectric con-

TABLE VII. Best-match model parameters for high-frequency
dielectric constants along with static dielectric constants extrapolated
from the model to ω = 0 for each tensor element.

εxx εyy εxy εzz

ε∞ 3.16(6) 3.12(7) 0.002(7) 3.11(4)
εDC 10.96(5) 9.80(1) 0.12(5) 11.47(4)
ε∞,DFT 3.570 3.549 −0.041 3.650

stants εDC for each tensor element were extrapolated from the
model calculation at ω = 0, and the high-frequency dielectric
constant was an offset parameter in the best-match model
analysis. From these, it is determined that the generalized LST
relation described by Schubert in Ref. [30] is well satisfied.

V. CONCLUSIONS

The frequency dependence of four independent Cartesian
tensor elements of the dielectric function for Y2SiO5 were
determined using generalized spectroscopic ellipsometry
with a dielectric function tensor model approach from
40–1200 cm−1. Three different surfaces cut perpendicular
to a principle axis were investigated. We match the spectral
dependence of the four wavelength-by-wavelength determined
dielectric function tensor elements as well as the four inverse
tensor elements along with the determinant and its inverse to
those rendered by our monoclinic model in order to determine
the 22 pairs of transverse and longitudinal optical phonon
modes with Bu symmetry and 23 pairs with Au symmetry.
We make use of two independent sets of anharmonic
oscillators to describe TO and LO mode parameters and their
eigendielectric displacement vectors within the a-c plane.
We report and compare our experimental findings to density
functional theory calculations. We discuss the observation of
the violation of the TO-LO rule for polarization within the
monoclinic plane. We report the static and high-frequency
dielectric tensor constants and find that the generalized
Lyddane-Sachs-Teller relation is well satisfied for Y2SiO5.
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