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1. Introduction

The purpose of this grant is to investigate the use and implementation
of Ada* in distributed environments in which reliability is the primary
concern. In particular, we are concerned with the possibility that a
distributed system may be programmed entirely in Ada so that the
individual tasks of the system are unconcerned with which processors they
are executing on, and that failures may occur in the software or underlying

hardware.

Over the next decade, it is expected that many aerospace systems will
use Ada as the primary implementation language. This is a logical choice
because the language has been designed for embedded systems. Also, Ada
has received such great care in its ‘design and implementation that it is
unlikely that there will be any practical alternative in selecting a

programming language for embedded software.

The reduced cost of computer hardware and the expected advantages of
distributed processing (for example, increased reliability through redundancy
and greater flexibility) indicate that many aerospace computer systems will
be distributed. The use of Ada and distributed systems seems like a good

combination for advanced aerospace embedded systems.

During this grant reporting period our primary activities have been:

8 Ada is a trademark of the U.S. Department of Defense
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(1) Continued development and testing of our fault-tolerant Ada testbed.

(2) Development of suggested changes to Ada so that it might more easily

cope with the failures of interest.

(3) Design of new approaches to fault-tolerant software in real-time systems,

and the integration of these ideas into Ada.
(4) The preparation of various papers and presentations.

The various implementation activities of our fault-tolerant Ada testbed
are described in section 2. In our analysis of the deficiencies of Ada, it has
been quite natural to consider what changes could be made to Ada to allow
it to have adequate semantics for handling failure. In section 3, we describe
some thoughts on this matter reflecting what we consider to be the minimal

changes that should be incorporated into Ada.

We consider it to be important that attention be paid to software fault
tolerance as well as hardware fault tolerance. The reliability of a system
depends on the correct operation of the software as well as the hardware.

Our concerns in this area are discussed in section 4.

During this grant reporting period we have made various reports about

this work. Our activities in this area are described in section 5.

A list of papers and reports prepared under this grant, other than the

annual and semiannual progress reports, is presented in Appendix 1. A
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paper presented during this grant reporting period is included as Appendix 2

(see also section 4).
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2. Implementation Status

At the beginning of this grant reporting period a major activity that we
undertook was to move the entire testbed to a network of Apollo DN300
workstations connected via a local area network. This was a substantial
undertaking since the Apollo and the VAX systems are quite different. We
set as a goal the development of a single version of the source text of the
testbed which would reside on the VAX. The Apollo version would be
build from this by various filters and other modification programs. The
benefit of this approach is that a single system exists (in principle) and so
bugs can be fixed and other changes made in one place but take effect on
both computer systems. We achieved this goal and have ported successfully
the entire testbed (but not the translator) to the Apollo system. The simple
test cases that we have executed on the VAX implementation operate

correctly on the Apollos.

One aspect of the translation of the system to the Apollos that
surprised us was the Apollo system’s communication performance. The VAX
version of the testbed implements a virtual network using UNIX “pipes”.
Clearly since the Apollo implementation uses real processors and a real
communication system, it was necessary to replace this part of the testbed.
This was anticipated and performed. The Apollo communication system is a
proprietary token-ring bus operating at 10 Mhz. Unfortunately this network
is not directly available to an application program. We have been promised
direct access on a restricted basis by Apollo Corporation on many occasions

but this access has not been forthcoming.
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The interface provided by the Apollo operating system is message based
but requires one of the network nodes to be executing a message-switching
program, thus implementing a ‘“star” network. Further, all communication
between nodes in this logical star is written to a disk and read from that
disk on its way from one node to another. This slows the effective
communication rate down by several orders of magnitude. Apart from the
difficulty that we experienced in determining exactly how this interface
worked and how to use it, when we finally got the necessary communication
operating, we discovered transmission speeds that are of the same order as

RS232.

During this grant reporting period there have been numerous changes to
the computer systems that we use that have affected our Ada testbed. They

are:

(1) The version of UNIX used by our VAX was changed from 4.1BSD to
4.2BSD. The testbed makes extensive use of the tasking features of
UNIX and other system facilities for terminal access and control. Much
of this interface was changed in the transition to 4.2BSD and the testbed
was not operational initially under 4.2BSD. All the necessary changes
have now been made and the testbed now operates correctly under

4.2BSD.

(2) The disk system for the Apollo network was enhanced substantially.
Several new, small disk units were added to improve performance of the

various Apollo workstations. In making this enhancement, subtle
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changes to the file system (normally transparent) were made and this
affected the testbed in a number of ways. All the modifications needed

to cope with the changes have now been made in the testbed.

(3) The operating system used by the Apollo network was upgraded to take
advantage of new facilities offered by Apollo. This has had some subtle
effects on the services that the testbed uses and stopped the testbed
from operating on the Apollos for some time. We have made the

necessary changes to the testbed to cope with the operating system

changes.

Given the poor communication performance offered by the Apollo network
we question the utility of having the testbed available on that network.
Our department expects to receive equipment to implement a new network
from a different supplier and we are considering using the new equipment

rather than continuing to use the Apollos.

We have very little control over the poor communications facilities
provided to us despite the fact that they play a significant role in the
testbed’s overall performance. However, in testing the testbed, we have
discovered that it is extremely inefficient in its own right. We never
intended the testbed to be an efficient implementation since our primary
concern was functionality. However, in trying to run test programs, we
have been frustrated by the slowness of the implementation. Consequently,
we have started a program of improving its efficiency in which we are

examining the algorithms and data structures used in the testbed. At



present we have nothing to report by way of performance improvement.
However, our initial investigation suggests that there are numerous areas that
can be enhanced. We expect to report on the efficiency gains in our final

report for 198S5.

During this grant reporting period we have extended the translator for
the subset of Ada that interests us and the translator is now essentially
complete. Although it operates on the VAX, it must be kept in mind that
it generates code for a synthetic Ada machine and so its output can be used
by the testbed when operating on any target, in particular the Apollo
network. The code quality produced by the translator is quite poor since,
once again, efficiency is not a concern of this project. However, in concert
with our efforts to improve the efficiency of the testbed, we are considering

improving the code quality produced by the translator.




3. Ada And Hardware Fault Tolerance

We have summarized our concerns about Ada’s inability to deal with
processor failure by pointing out that the problem is basically one of omitted
semantics. Nothing is stated in the Ada Language Reference Manual about
how programs are to proceed when a processor is lost in a distributed
system although the manual does include distributed computers as wvalid

targets specifically.

We have proposed additional semantics to deal with this situation. The
heart of these additional semantics is the notion that the loss of a processor
and consequently the loss of part of the program can be viewed as
equivalent to the execution of abort statements on the lost tasks. Thus in
all cases, failure semantics would be equivalent to the semantics of abort.
We have also proposed a comprehensive mechanism for implementing these
semantics. This mechanism requires quite extensive changes to the
execution-time support for Ada but it is feasible as we have shown in our

testbed implementation.

The use of abort semantics is not an elegant approach. There are
numerous consequences that seem rather extreme if considered out of context.
For example, abort semantics imply that all the dependent tasks of a task
that is lost must be terminated even if they are still executing on non-failed
computers. The overwhelming advantage of abort semantics is that they do

not require that the language be changed.
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A more elegant and clearly preferable approach in the long run is to
modify the language and to introduce language structures that include
appropriate failure semantics. During this grant reporting period we have
continued our consideration of what form these language structures might
take. Our conclusions are contained in a language design that we call Ada-2.
Some of the general aspects of Ada-2 will be summarized here briefly, and a

complete description supplied to the sponsor under separate cover.

In Ada-2, the sequential part of Ada is left unchanged except for rules
of visibility. However, those parts of Ada that deal with tasks and the
concept of a program have been changed completely. Packages have been

slightly modified and play a more important role than before.

The main structural element in many sequential languages is the
procedure. If procedures could be carried over to the distributed case, then
the distribution could be made transparent to the programmer. This is an
attractive idea and wvarious attempts have been made to achieve it. Nelson’s
work [1] on remote procedure calls is a typical example. Even in Ada,
communication with a task was designed to appear to the caller like a
procedure call. However, in our opinion, the procedure may not be a good

model for distributed computing.

To understand why, it is useful to consider which of those properties of
a procedure in a sequential language carry over naturally to the distributed
case. In the sequential case a procedure is subordinate to its caller. At the

point of call, provision is made for the return of wvalues, an instance of a

M|



10

procedure is created, and values are passed to it. At this point the caller,
called the creator process, turns over control of its run-time environment to

the procedure which executes and then returns control to the creating process.

A first step towards the distributed case is to let a separate process,
called the procedure process, be created to run the procedure when a remote
procedure call is made. This is not efficient but conceptually nothing is
really changed. As before, the creator of the procedure process remains

suspended until the procedure process has completed its execution.

A further step towards the distributed case is to imagine that the
creator process and the procedure process are on different machines. If the
creator process remains suspended while the procedure process runs, then
logically this remains close to the original sequential picture. However, if
the processes are on different machines the only reason for suspending the
creator process is to mimic the sequential case. From the viewpoint of the
distributed case the natural thing is to let both processes proceed. This is

substantially different from the sequential case.

If both tasks proceed, something must be done about the return of
values to the creating process. Again the natural thing is for the creating
process to make provision for the return at the time of the call; the creating
process must then be able to obtain Tesults or wait for results at any
subsequent time in its execution. It is important to notice that the
procedure process here is still subordinate to the creator process; it is created,

performs some function, and is removed.
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This model of a task has arisen through the natural extension of a
procedure call to a distributed model. A quite different model of a task
arises from the extension of the idea of a program to a distributed situation.
Here each processor would be running a separate program. There is no
creator and there are no subordinates, communication is not constrained to
occur at the beginning and end of one of the processes, and communication
with other processes can occur. This idea of a task is quite different from
the idea of a procedure task and is closer to the idea of an Ada task. In
fact Ada programs commonly use procedures, encapsulated in a package, to
enforce some entry call protocol for a task also contained in the package.

Such procedures are logically equivalent to a procedure task.

It might be argued that a procedure task is just a simple task and that
there should not be separate units in the language to describe them. In fact
the two concepts arise from different viewpoints and are used differently. In
particular, the failure semantics for tasks and for procedure tasks are
completely different; procedure tasks depend on their creator, tasks do not.
In Ada-2 there are two flavors of tasks; tasks which model the procedure

tasks described above and others that are similar to Ada tasks.

It is important to be able to collect various related run-time objects
together and to provide an interface tp them for the user. This is the
reason that Ada has packages. However, in Ada packages, the different
requirements that a programmer has for compile-time and for run-time
objects are confused. This is very important for distributed programs since

the distribution occurs at run time, not at compile time. Objects that exist
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at compile time only need not be concerned with failure semantics but run-
time objects must always be concerned with failure semantics. - This has

been missed completely in Ada.

The program unit that provides encapsulation in Ada-2 is also called a
package. Ada-2 packages are similar to Ada packages, although the role of
an Ada package which does not define run-time objects is taken by a named
declarative group. The named declarative group encapsulates declarations
which do not define run-time objects but which enable a wunit using the
declarative group to define run-time objects. Named declarative groups will
thus contain type declarations for data, packages, tasks, sub-tasks and
procedures. Named declarative groups can also contain declarations of
constants. Unlike packages which can be considered to have a run-time
existence, named declarative groups will not exist at run-time. and can be

viewed as being copied across the various machines in a distributed system.

Both packages and named declarative groups can be used by units other
than the declaring unit by being mentioned in a with statement.
Declarations intended for use by the declaring unit only would be defined in
un-named declarative groups; an un-named declarative group can contain
declarations of run-time objects. As an un-named declarative group can only
be used by the enclosing unit, un-named declarative groups will not be

considered program units.

The remaining program units in Ada-2 are bodies of tasks, packages,

sub-tasks and procedures. In contrast to Ada a body is not restricted to
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appear in the same declarative part as the specification. A body, however,

must occur before the declaration of an object which uses the body.

At the top level, an Ada-2 program consists of named declarative
groups, packages and package bodies, and tasks and subtasks. The top level
declarative groups are convenient for encapsulating global constants and
types. All top-level packages must specify which processor they will run on.
Execution of the program is initialized by starting the top-level packages on
their designated processors in some arbitrary order. It is this program
organization that permits a clear approach to failure semantics. The details

of failure semantics are too lengthy to be described here.
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4, Ada 'And Software Fault Tolerance

In a previous grant reporting period, we examined the literature on
fault-tolerant software with the goal of determining the adequacy of Ada in
providing a software fault tolerance mechanism. We found that Ada makes
no provision for software fault tolerance. Consequently we have considered

what extensions to Ada might be desirable to support fault-tolerant software.

Software fault tolerance is rarely used in practice and, when it is used,
it is ad hoc with no formalism or organization. One of the reasons for this
state of affairs is the general inadequacy of existing proposals for building
software in a fault-tolerant manner. Before reviewing Ada and trying to
incorporate software fault tolerance mechanisms into the language changes, we
reviewed the state of the art and prepared a systematic set of criticisms of
existing proposal for the provision of fault tolerance in software. Since our
last grant report we have made considerable progress in defining new
approaches to fault-tolerant software and integrating them into Ada. We
have defined constructs that we call the dialog and the dialog_sequence which
give new flexibility and control in the provision of backward error recovery.
These constructs have been described in a paper that has been supplied to

the sponsor under a separate cover.

We have pursued the implementation issues for these constructs during
the current grant reporting period and completed an analysis of the

implementation issues. Details will be supplied to the sponsor.



15

After analyzing the implementation issues to determine implementability,
we turned our attention to the integration of these constructs into existing
languages, particularly Ada. Unfortunately, we consider that we have
isolated fundamental problems with existing programming languages, typified
by Ada, that make integrating backward error recovery very difficult. The
problems center around conflicts between the linguistic restrictions that have
to be imposed by backward error recovery if it is to be successful, and the
perceived needs of the programming language user. Our concerns are
remarkably similar to those expressed by other workers who have reviewed
programming languages with other objectives in mind. For example, the
community of researchers interested in formal verification have found the

same difficulties with languages like Ada as we do.

We have prepared a detailed report on the difficulties of integrating
backward error recovery, and another report that addresses them and
proposes various solutions. These reports will be supplied to the sponsor

separately.
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5. Professional Activities

During this grant reporting period we prepared and presented a paper
about our work under this grant on fault-tolerant software at the Fifteenth
International Symposium on Fault-Tolerant Computing held in Ann Arbor,
Michigan. A copy of that paper as it appears in the Digest of Papers is
included in this report as Appendix 2. We also gave a seminar describing

the work at NASA’s Goddard Space Flight Center.
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1. INTRODUCTION

In this paper we examine the issues involved in the use of backward error recovery in
critical, real-time systems. In particular, we are concerned with language facilities that
allow programmers to specify how alternate algorithms are to be applied in the event that
an error is detected. The best—known approach is the conversationl. Many difficulties with
conversations have been pointed out including the lack of any time—out provision and the
possibility of deserter processes. We introduce a new building block for concurrent
programs called the dialog and a new backward—error—recovery primitive called the
colloquy that remedy the various limitations of the conversation. The colloquy is
constructed from dialogs and provides a general framework for describing backward error

recovery in concurrent programs.

All of the syntactic proposals that we introduce are derived from Ada® 2. The dialog
and colloquy are proposed as general concepts but the specific syntax for their use is given
as extensions to Ada. The actual syntax is irrelevant; the concepts could be used in many
other programming languages. However, once chosen, a rigid syntax can allow a compiler

to enforce certain of the semantic rules.

In section two, we briefly describe the concept of the conversation and the associated
syntactic proposals that have been made. Issues that have been raised with conversations
are discussed in section three. In section four, we present a syntax for the dialog called the
discuss statement. In section five, we introduce the collogquy and a new statement called
the dialog__sequence which allows the specification of the actions needed for a colloquy. In
section six, we discuss the use of colloquys in the implementation of all previous approaches

to backward error recovery.

“Adaisa registered trademark of the U.S. Government (Ada Joint Program Office).




2. CONVERSATIONS

The conversation is the canonical software fault—tolerance proposal for dealing with
communicating processes. In a conversation a group of processes separately establish
recovery points and begin communicating. At the end of their communication (i.e. the end
of the conversation), which may include the passage of multiple distinct sets of
information, they each wait for the others to arrive at an acceptance test for the group. If
they pass the acceptance test, they commit to the information exchange that has transpired
by discarding their recovery points and proceeding. Should they fail the acceptance test,
they all restore their states from the recovery points. No process is allowed to smuggle
information in or out by communicating with a process that is not participating in the
conversation. Conversations can be nested; from the point of view of a surrounding

conversation, a nested conversation is an atomic action3.

Although not explicitly stated in the literature, it is assumed that if an error occurs
during a conversation such that the acceptance test fails, the same set of conversant
processes attempt to communicate again once individually rolled back and reconfigured
(rather than proceeding on unrelated activities). It follows that they eventually reach the
same acceptance test again. It is also presumed that any other failure of one of the processes

is taken as equivalent to a failure of the acceptance test by all of them.

The processes in a conversation are the components of a system of processes. Error

. detection mechanisms for this system consist of announcement of failure by any one of the

components and the single acceptance test. The acceptance test evaluates the combined
states of the component processes with the designed intent of their communications.
Damage assessment is complete before execution begins since the individual states of all the
processes involved in the conversation are suspect, but no other processes are affected. Error
recovery consists of restoring each process to the state it had as it entered the conversation,

and the system of processes continues with its service by allowing each process to re—try



the communication perhaps using an alternate mechanism within that process for the

communication activity.

Conversations were originally proposed as a structuring or design concept without any
syntax that might allow enforcement of the rules. Russell? has proposed the "Name-
Linked Recovery Block" as a syntax for conversations. The syntax appropriates that of the
recovery blocks. What would otherwise be a recovery block, becomes part of a
conversation designated by a conversation identifier. The primary and alternate activities
of the recovery block become that process’ primary and alternate activities during the
conversation, and the recovery block’s acceptance test becomes that portion of the
conversation’s acceptance test appropriate to this process. The conversation’s acceptance test
is evaluated after the last conversant reaches the end of its primary or alternate. If any of

the processes fail its acceptance test, all conversants are rolled back.

Kim has examined several more possible syntaxes for convers::ltions6

. His approaches
assume the use of monitors’ as the method of communication among processes. He examines
the situation from two philosophies toward grouping. In one scheme, the conversing
activities are grouped with their respective processes’ source code, but are well marked at
those locations. In another scheme, the conversing actions of the several processes are
grouped into one place so that the conversation has a single location in the source code. The
issue he is addressing is whether it is better to group the text of a conversation and scatter

the text of a process or to group the text of a process and scatter the text of a conversation.

A third scheme attempts to resolve the differences between the first two.

3. ISSUES WITH CONVERSATIONS

Desertion is the failure of a process to enter a conversation or arrive at the acceptance

test when other processes expect its presence. Whether the process will never enter the



conversation, is simply late, or enters the conversation only to take too long or never arrive
at the acceptance test, does not matter to the others if they have real-time deadlines to
meet. Each process may have its own view of how long it is willing to wait, especially
since processes may enter a conversation asynchronously. Whether they protect inter—
process communications or sequential parts of processes, acceptance tests must be reached
and reached on time for the results to be useful. Meeting real-time deadlines is as
important to providing the specified service as is producing correct output. In order to deal
effectively with desertion, especially in critical systems, some form of timing specification

on communication and on sequential codes is vital.

When it needs to communicate, a process enters a conversation and stays there, perhaps
through many alternate algorithms, until the communication is completed successfully.
The same group of processes are required to be in the alternate interactions as were in the
primary. The recovery action merely sets up the communication situation again. In the
original form of conversation, once a process enters the construct, it cannot break out and
must continue trying with the same set of other processes, including one or more which
may be incapable of correct operation. In practice, when a process fails in a primary
attempt at communication with one group of processes to achieve its goal, it may want to
attempt to communicate with an entirely different group as an alternate strategy for
achieving that goal; in fact, different processes might make different numbers of attempts
at communicating. Conversations do not allow this, although it is not desertion if it is

systematic and intended.

In a conversation, once individually rolled back and reconfigured, the same set of
conversant processes attempt to communicate again, and eventually reach the same
acceptance test again. True independence of algorithms between primary and alternates,
within the context of backward error recovery, might require very different acceptance

tests for each algorithm, particularly if some of them provide significantly degraded



services. A single test for achievement of a process’ goal at a particular point in its text
would of necessity have to be general enough to pass results of the most degraded
algorithm. This might be too general to enable it to catch errors produced by other, more
strict, algorithms. These considerations suggest the need for separate acceptance tests

specifically tailored for each of the primary and alternate algorithms.

It must also be remembered, that although each process has its own reasons for
participating, there is a goal for the group of processes as well. Rather than combine the
individual goals of the many participants with the group goal in a single acceptance test
(perhaps allowing the programmer to forget some), and rather than replicating the test for
achievement of the group goal within every participant, there should be a separate

acceptance test for each participant and another for the group.

A final problem with the conversation concept as it was originally defined, is that if a
process runs out of alternates, no scheme is provided or mentioned for dealing with the

situation.

4. THE DIALOG

We define a dialog to be an occurrence in which a set of processes:
(a) establish individual recovery points,
(b) communicate among themselves and with no others,

(c) determine whether all should discard their recovery points and proceed or restore
their states from their recovery points and proceed, and

(d) follow this determination.

Success of a dialog is the determination that ali participating processes should discard
their recovery points and proceed. Failure of a dialog is the determination that they should

restore their states from their recovery points and proceed. Nothing is said about what



should happen after success or failure; in either case the dialog is complete. Dialogs may be
properly nested, in which case the set of processes participating in an inner dialog is a
subset of those participating in the outer dialog. Success or failure of an inner dialog does
not necessarily imply success or failure of the outer dialog. Figure 1 shows a set of three

processes communicating within a dialog.

We introduce the discuss statement as a syntactic form that can be used to denote a
dialog. Figure 2 shows the general form of a discuss statement. The dialog__name associates
a particular discuss statement with the discuss statements of the other processes
participating in this dialog, dynamically determining the constituents of the dialog. This

association cannot in general be