
Semi-Annual Progress Report

Contract No. NAG-1-260 /t” -
3/Yb3

THE IMPLEMENTATION AND USE OF ADA ON DISTRIBUTED
SYSTEMS WITH HIGH RELIABILITY REQUIREMENTS

Submitted to:
National Aeronautics and Space Administration

Langley Research Center
Hampton, Virginia 23665

Attention: Mr. Edmund H. Senn
ACD, MS 125

’ Submitted by:
J. C. Knight

Associate Professor
S. T. Gregory

Graduate Research Assistant
J. I. A. Urquhart

Graduate Research Assistant

A H SCHOOL OF ENGINEERING AND Qrn x M m . d a

APPLIED SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF \J,I RGlN IA
*.I

CHARLOTTESVILLE, VIRGINIA 22901 ma

https://ntrs.nasa.gov/search.jsp?R=19870002810 2020-03-20T13:40:45+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42839231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Semi-Annual Progress Report

Contract No. NAG-1-260

THE IMPLEMENTATION AND USE OF ADA ON DISTRIBUTED
SYSTEMS WITH HIGH RELIABILITY REQUIREMENTS

Submitted to:
National Aeronautics and Space Administration

Langley Research Center
Hampton, Virginia 23665

Attention: Mr. Edmund H. Senn
ACD, MS 125

Submitted by:
J. C. Knight

Associate Professor
S. T. Gregory

Graduate Research Assistant
J. I. A. Urquhart

Graduate Research Assistant

Department of Computer Science
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA

T

_ -

Report No. WA/528213/CS86/107
August 1985

Copy No.

,

1

1. Introduction

The purpose of this grant is to investigate the use and implementation

of Ada in distributed environments in which reliability is the primary
*

concern. In particular, we are concerned with the possibility that a

distributed system may be programmed entirely in Ada so that the

individual tasks of the system are unconcerned with which processors they

are executing on, and that failures may occur in the software or underlying

hardware.

Over the next decade, it is expected that many aerospace systems will

use Ada as the primary implementation language. This is a logical choice

because the language has been designed for embedded systems. Also, Ada

has received such great care in its design and implementation that it is

unlikely that there will be any practical alternative in selecting a

programming language for embedded software.

The reduced cost of computer hardware and the expected advantages of

distributed processing (for example, increased reliability through redundancy

and greater flexibility) indicate that many aerospace computer systems will

be distributed. The use of Ada and distributed systems seems like a good

combination for advanced aerospace embedded systems.

During this grant reporting period our primary activities have been:

Ada is a trademark of the U.S. Department of Defense

2

Continued development and testing of our f ault-tolerant Ada testbed.

Development of suggested changes to Ada so that it might more easily

cope with the failures of interest.

Design of new approaches to fault-tolerant software in real-time systems,

and the integration of these ideas into Ada.

The preparation of various papers and presentations.

The various implementation activities of our fault-tolerant Ada testbed

described in section 2. In our analysis of the deficiencies of Ada, it has

been quite natural to consider what changes could be made to Ada to allow

it to have adequate semantics for handling failure. In section 3, we describe

some thoughts on this matter reflecting what we consider to be the minimal

changes that should be incorporated into Ada.

We consider it to be important that attention be paid to software fault

tolerance as well as hardware fault tolerance. The reliability of a system

depends on the correct operation of the software as well as the hardware.

Our concerns in this area are discussed in section 4.

During this grant reporting period we have made various reports about

this work. Our activities in this area are described in section 5.

A list of papers and reports prepared under this grant, other than the

annual and semiannual progress reports, is presented in Appendix 1. A

I

I
3

paper presented during this grant reporting period is included as Appendix 2

(see also section 4).

4

2 Implementation Status

At the beginning of this grant reporting period a major activity that we

undertook was to move the entire testbed to a network of Apollo DN300

workstations connected via a local area network. This was a substantial

undertaking since the Apollo and the VAX systems are quite different. We

set as a goal the development of a single version of the source text of the

testbed which would reside on the VAX. The Apollo version would be

build from this by various filters and other modification programs. The

benefit of this approach is that a single system exists (in principle) and so

bugs can be fixed and other changes made in one place but take effect on

both computer systems. We achieved this goal and have ported successfully

the entire testbed (but not the translator) to the Apollo system. The simple

test cases that we have executed on the VAX implementation operate

correctly on the Apollos.

One aspect of the translation of the system to the Apollos that

surprised us was the Apollo system’s communication performance. The VAX

version of the testbed implements a virtual network using UNIX “pipes”.

Clearly since the Apollo implementation uses real processors and a real

communication system, it was necessary to replace this part of the testbed.

This was anticipated and performed. The Apollo communication system is a

proprietary token-ring bus operating at 10 Mhz. Unfortunately this network

is not directly available to an application program. We have been promised

direct access on a restricted basis by Apollo Corporation on many occasions

but this access has not been forthcoming.

I ,

5

The interface provided by the Apollo operating system is message based

but requires one of the network nodes to be executing a message-switching

program, thus implementing a “star” network. Further, all communication

between nodes in this logical star is written to a disk and read from that

disk on its way from one node to another. This slows the effective

communication rate down by several orders of magnitude. Apart from the

difficulty that we experienced in determining exactly how this interface

worked and how to use it, when we finally got the necessary communication

operating, we discovered transmission speeds that are of the same order as

RS232.

During this grant reporting period there have been numerous changes to

They the computer systems that we use that have affected our Ada testbed.

are:

(1) The version of UNIX used by our VAX was changed from 4.lBSD to

4.2BSD. The testbed makes extensive use of the tasking features of

UNIX and other system facilities for terminal access and control. Much

of this interface was changed in the transition to 4.2BSD and the testbed

was not operational initially under 4.2BSD. All the necessary changes

have now been made and the testbed now operates correctly under

4.2BSD.

(2) The disk system for the Apollo network was enhanced substantially.

Several new, small disk units were added to improve performance of the

various Apollo workstations. In making this enhancement, subtle

6

changes to the file system (normally transparent) were made and this

affected the testbed in a number of ways. All the modifications needed

to cope with the changes have now been made in the testbed.

(3) The operating system used by the Apollo network was upgraded to take

advantage of new facilities offered by Apollo. This has had some subtle

effects on the services that the testbed uses and stopped the testbed

from operating on the Apollos for some time. We have made the

necessary changes to the testbed to cope with the operating system

changes.

Given the poor communication performance offered by the Apollo network

we question the utility of having the testbed available on that network.

Our department expects to receive equipment to implement a new network

from a different supplier and we are considering using the new equipment

rather than continuing to use the Apollos.

We have very little control over the poor communications facilities

provided to us despite the fact that they play a significant role in the

testbed’s overall performance. However, in testing the testbed, we have

discovered that it is extremely inefficient in its own right. We never

intended the testbed to be an efficient implementation since our primary

concern was functionality. However, in trying to run test programs, we

have been frustrated by the slowness of the implementation. Consequently,

we have started a program of improving its efficiency in which we are

examining the algorithms and data structures used in the testbed. At

..

7

present we have nothing to report by way of performance improvement.

However, our initial investigation suggests that there are numerous areas that

can be enhanced. We expect to report on the efficiency gains in our final

report for 1985.

During this grant reporting period we have extended the translator for

the subset of Ada that interests us and the translator is now essentially

complete. Although it operates on the VAX, it must be kept in mind that

it generates code for a synthetic Ada machine and so its output can be used

by the testbed when operating on any target, in particular the Apollo

network. The code quality produced by the translator is quite poor since,

once again, efficiency is not a concern of this project. However, in concert

with our efforts to improve the efficiency of the testbed, we are considering

improving the code quality produced by the translator.

8

3. Ada And Hardware Fault Tolerance

We have summarized our concerns about Ada’s inability to deal with

processor failure by pointing out that the problem is basically one of omitted

semantics. Nothing is stated in the Ada Language Reference Manual about

how programs are to proceed when a processor is lost in a distributed

system although the manual does include distributed computers as valid

targets specifically.

We have proposed additional semantics to deal with this situation. The

heart of these additional semantics is the notion that the loss of a processor

and consequently the loss of part of the program can be viewed as

equivalent to the execution of abort statements on the lost tasks. Thus in

all cases. failure semantics would be equivalent to the semantics of abort.

We have also proposed a comprehensive mechanism for implementing these

semantics. This mechanism requires quite extensive changes to the

execution-time support for Ada but it is feasible as we have shown in our

testbed implementation.

The use of abort semantics is not an elegant approach. There are

numerous consequences that seem rather extreme if considered out of context.

For example, abort semantics imply that all the dependent tasks of a task

that is lost must be terminated even if they are still executing on non-failed

computers. The overwhelming advantage of abort semantics is that they do

not require that the language be changed.

9

A more elegant and clearly preferable approach in the long run is to

modify the language and to introduce language structures that include

appropriate failure semantics. During this grant reporting period we have

continued our consideration of what form these language structures might

take. Our conclusions are contained in a language design that we call Ada-2.

Some of the general aspects of Ada-2 will be summarized here briefly, and a

complete description supplied to the sponsor under separate cover.

In Ada-2, the sequential part of Ada is left unchanged except for rules

of visibility. However, those parts of Ada that deal with tasks and the

concept of a program have been changed completely. Packages have been

slightly modified and play a more important role than before.

The main structural element in many sequential languages is the

procedure. If procedures could be carried over to the distributed case, then

the distribution could be made transparent to the programmer. This is an

attractive idea and various attempts have been made to achieve it. Nelson’s

work [l] on remote procedure calls is a typical example. Even in Ada,

communication with a task was designed to appear to the caller like a

procedure call. However, in our opinion, the procedure may not be a good

model for distributed computing.

To understand why, it is useful to consider which of those properties of

a procedure in a sequential language carry over naturally to the distributed

case. At the

point of call, provision is made for the return of values, an instance of a

In the sequential case a procedure is subordinate to its caller.

10

procedure is created, and values are passed to it. At this point the caller,

called the creator process, turns over control of its run-time environment to

the procedure which executes and then returns control to the creating process.

A first step towards the distributed case is to let a separate process,

called the procedure process, be created to run the procedure when a remote

procedure call is made. This is not efficient but conceptually nothing is

really changed. As before, the creator of the procedure process remains

suspended until the procedure process has completed its execution.

A further step towards the distributed case is to imagine that the

creator process and the procedure process are on different machines. If the

creator process remains suspended while the procedure process runs, then

logically this remains close to the original sequential picture. However, if

the processes are on different machines the only reason for suspending the

creator process is to mimic the sequential case. From the viewpoint of the

distributed case the natural thing is to let both processes proceed. This is

substantially different from the sequential case.

If both tasks proceed, something must be done about the return of

values to the creating process. Again the natural thing is for the creating ,

process to make provision for the return at the time of the call; the creating -
--

process must then be able to obtain results or wait for results at any

subsequent time in its execution. It is important to notice that the

procedure process here is still subordinate to the creator process; it is created,

performs some function, and is removed.

This model of a task has arisen through the natural extension of a

procedure call to a distributed model. A quite different model of a task

arises from the extension of the idea of a program to a distributed situation.

Here each processor would be running a separate program. There is no

creator and there are no subordinates, communication is not constrained to

occur at the beginning and end of one of the processes, and communication

with other processes can occur. This idea of a task is quite different from

the idea of a procedure task and is closer to the idea of an Ada task. In

fact Ada programs commonly use procedures, encapsulated in a package, to

enforce some entry call protocol for a task also contained in the package.

Such procedures are logically equivalent to a procedure task.

It might be argued that a procedure task is just a simple task and that

In fact

In

there should not be separate units in the language to describe them.

the two concepts arise from different viewpoints and are used differently.

particular, the failure semauics for tasks and for procedure tasks are

completely different; procedure tasks depend on their creator, tasks do not.

In Ada-2 there are two flavors of tasks; tasks which model the procedure

tasks described above and others that are similar to Ada tasks.

It is important to be able to collect various related run-time objects

together and to provide an interface to them for the user. This is the

reason that Ada has packages. However, in Ada packages, the different

requirements that a programmer has for compile-time and for run-time

objects are confused. This is very important for distributed programs since

the distribution occurs at run time, not at compile time. Objects that exist

-
-_

12

at compile time only need not be concerned with failure semantics but run-

time objects must always be concerned with failure semantics. - This has

been missed completely in Ada.

The program unit that provides encapsulation in Ada-2 is also called a

package. Ada-2 packages are similar to Ada packages, although the role of

an Ada package which does not define run-time objects is taken by a named

dechrative group. The named declarative group encapsulates declarations

which do not define run-time objects but which enable a unit using the

declarative group to define run-time objects. Named declarative groups will

thus contain type declarations for data, packages, tasks, sub-tasks and

procedures. Named declarative groups can also contain declarations of

constants. Unlike packages which can be considered to have a run-time

existence, named declarative groups will not exist at run-time. and can be

viewed as beingcopied across the various machines in a distributed system.

Both packages and named declarative groups can be used by units other

than the declaring unit by being mentioned in a with statement.

Declarations intended for use by the declaring unit only would be defined in

un-named declarative groups; an un-named declarative group can contain

declarations of run-time objects. As an un-named declarative group can only

be used by the enclosing unit, un-named declarative groups will not be

considered program units.

The remaining program units in Ada-2 are bodies of tasks, packages,

sub-tasks and procedures. In contrast to Ada a body is not restricted to

1

13

appear in the same declarative part as the specification. A body, however,

must occur before the declaration of an object which uses the body.

At the top level, an Ada-2 program consists of named declarative

groups, packages and package bodies, and tasks and subtasks. The top level

declarative groups are convenient for encapsulating global constants and

types. All top-level packages must specify which processor they will run on.

Execution of the program is initialized by starting the top-level packages on

their designated processors in some arbitrary order. It is this program

organization that permits a clear approach to failure semantics. The details

of failure semantics are too lengthy to be described here.

14

4. Ada And Software Fault Tolerance

In a previous grant reporting period, we examined the literature on

fault-tolerant software with the goal of determining the adequacy of Ada in

providing a software fault tolerance mechanism. We found that Ada makes

no provision for software fault tolerance. Consequently we have considered

what extensions to Ada might be desirable to support fault-tolerant software.

Software fault tolerance is rarely used in practice and, when it is used,

it is ad hoc with no formalism or organization. One of the reasons for this

state of affairs is the general inadequacy of existing proposals for building

software in a fault-tolerant manner. Before reviewing Ada and trying to

incorporate software fault tolerance mechanisms into the language changes, we

reviewed the state of the art and prepared a systematic set of criticisms of

existing proposal for the provision of fault tolerance in software. Since our

last grant report we have made considerable progress in defining new

approaches to fault-tolerant software and integrating them into Ada. We

have defined constructs that we call the didog and the dialog-sequence which

give new flexibility and control in the provision of backward error recovery.

These constructs have been described in a paper that has been supplied to

the sponsor under a separate cover.
-

- .._
We have pursued the implementation issues for these constructs during

the current grant reporting period and completed an analysis of the

implementation issues. Details will be supplied to the sponsor.

15

After analyzing the implementation issues to determine implementability ,

we turned our attention to the integration of these constructs into existing

languages, particularly Ada. Unfortunately, we consider that we have

isolated fundamental problems with existing programming languages, typified

by Ada, that make integrating backward error recovery very difficult. The

problems center around conflicts between the linguistic restrictions that have

to be imposed by backward error recovery if it is to be successful, and the

perceived needs of the programming language user. Our concerns are

remarkably similar to those expressed by other workers who have reviewed

programming languages with other objectives in mind. For example, the

community of researchers interested in formal verification have found the

same difficulties with languages like Ada as we do.

We have prepared a detailed report on the difficulties of integrating

backward error recovery, and another report that addresses them and

proposes various solutions. These reports will be supplied to the sponsor

separately.

16

5. Professional Activities

During this grant reporting period we prepared and presented a paper

about our work under this grant on fault-tolerant software a t the Fifteenth

International Symposium on Fault-Tolerant Computing held in Ann Arbor,

Michigan. A copy of that paper as it appears in the Digest of Papers is

included in this report as Appendix 2. We also gave a seminar describing

the work at NASA’s Goddard Space Flight Center.

17

REFERENCE

(1) B.J. Nelson, “Remote Procedure Call”, PhD Dissertation, Computer Science

Department, Carnegie Mellon University, May 1981.

18

Appendix 1

The following is a list of papers and reports, other than progess reports,

prepared under this grant.

(1 Knight, J.C. and J.I.A. Urquhart, “Fault-Tolerant Distributed Systems

Using Ada”, Proceedings of the AIAA Compzaers in Aerospace Conference,

October 1983, Hartford, CT.

(2) Knight, J.C. and J.I.A. Urquhart, “The Implementation And Use Of Ada

On Fault-Tolerant Distributed Systems”, Ada LETTERS, Vol. 4 No. 3

November 1 984.

(3) Knight, J.C. and J.I.A. Urquhart, “On The Implementation and Use of

Ada on Fault-Tolerant Distributed Systems”, submitted to I€EE

Transactions on Software Engineering.

(4) Knight J.C. and S.T. Gregory, “A Testbed for Evaluating Fault-Tolerant

Distributed Systems”, Digest of Papers FTCS-14: Fourteenlh Ann&

Symposium on Fault-Tolerad Compzding, June 1984, Orlando, FL.

- (5) Knight J.C. and S.T. Gregory, “A New Linguistic Approach To Backward

Error Recovery”, Digest of Papers FTCS- 15: Fifteenth Annual Symposium

on Fault-Toleraw Cornwing, June 1985, Ann Arbor, MI.

I --

(6) Knight, J.C. and J.I.A. Urquhart, “Difficuties With Ada As A Language

For Reliable Distributed Processing”, Unpublished.

19

(7) Knight, J.C. and J.I.A. Urquhart, “Programming Language Requirements

For Distributed Real-Time Systems Which Tolerate Processor. Failure”,

Unpublished.

I;

Appendix 2

This appendix contains the text of a paper prepared under this grant and

presented at FTCSl5: The Fifteenth International Symposium On Fault-

Tolerant Computing, Ann Arbor, Michigan, June 1985.

A NEW LINGUISJIC APPROACH TO BACKWARD ERROR RECOVERY*

**
Samuel T. Gregory John C. Knight

Department of Computer Science
University of Virginia

Charlottesville, Virginia, U.S.A. 22903
(804) 924-7605

ABSTRACT

Issues involved in language facilities for backward error recovery in critical, real-time
systems are examined. Previous proposals are found lacking. The dialog, a new building
block for concurrent programs, and the colloquy, a new backward error recovery primitive,
are introduced to remedy the situation. The previous proposals are shown to be special cases
of the colloquy. Thus, the colloquy provides a general framework for describing backward
error recovery in concurrent programs.

Subject Index:
Reliable Software - Interprocess Communication and Synchronization

This work was sponsored by NASA grant number NAG1-260and has been cleared for publication by the
sponsoring organmuon.

XX

Presenter at FTCS-15 if paper is accepted.

1. INTRODUCTlON

In this paper we examine the issues involved in the use of backward error recovery in

critical, real-time systems. In particular, we are concerned with language facilities that

allow programmers to specify how alternate algorithms are to be applied in the event that

1 an error is detected. The best-known approach is the conversation . Many difficulties with

conversations have been pointed out including the lack of any time-out provision and the

possibility of deserter processes. We introduce a new building block for concurrent

programs called the dialog and a new backward-error-recovery primitive called the

colloquy that remedy the various limitations of the conversation. The colloquy is

constructed from dialogs and provides a general framework for describing backward error

recovery in concurrent programs.

All of the syntactic proposals that we introduce are derived from Ada@ ’. The dialog

and colloquy are proposed as general concepts but the specific syntax for their use is given

as extensions to Ada. The actual syntax is irrelevant; the concepts could be used in many

other programming languages. However, once chosen, a rigid syntax can allow a compiler

to enforce certain of the semantic rules.

In section two, we briefly describe the concept of the conversation and the associated

syntactic proposals that have been made. Issues that have been raised with conversations

are discussed in section three. In section four, we present a syntax for the dialog called the

discuss statement. In section five, we introduce the colloquy and a new statement called

the dialog-sequence which allows the specification of the actions needed for a colloquy. In

section six, we discuss the use of colloquys in the implementation of all previous approaches

to backward error recovery.

‘Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

- 1 -

2. CONVERSATIONS

The conversation is the canonical software f ault-tolerance proposal for dealing with

communicating processes. In a conversation a group of processes separately establish

recovery points and begin communicating. At the end of their communication (i.e. the end

of the conversation), which may include the passage of multiple distinct sets of

information, they each wait for the others to arrive at an acceptance test for the group. If

they pass the acceptance test, they commit to the information exchange that has transpired

by discarding their recovery points and proceeding. Should they fail the acceptance test,

they all restore their states from the recovery points. No process is allowed to smuggle

information in or out by communicating with a process that is not participating in the

conversation. Conversations can be nested; from the point of view of a surrounding

conversation, a nested conversation is an atomic action 3 .

Although not explicitly stated in the literature, i t is assumed that if an error occurs

during a conversation such that the acceptance test fails, the same set of conversant

processes attempt to communicate again once individually rolled back and reconfigured

(rather than proceeding on unrelated activities). It follows that they eventually reach the

same acceptance test again. I t is also presumed that any other failure of one of the processes

is taken as equivalent to a failure of the acceptance test by all of them.

The processes in a conversation are the components of a system of processes. Error

detection mechanisms for this system consist of announcement of failure by any one of the

components and the single acceptance test. The acceptance test evaluates the combined

states of the component processes with the designed intent of their communications.

Damage assessment is complete before execution begins since the individual states of all the

processes involved in the conversation are suspect, but no other processes are affected. Error

recovery consists of restoring each process to the state it had as i t entered the conversation,

and the system of processes continues with its service by allowing each process to re-try

- 2 -

the communication perhaps using an alternate mechanism within that process f-or the

communication activity.

Conversations were originally proposed as a structuring or design concept without any

syntax that might allow enforcement of the rules. Russell has proposed the “Name-

Linked Recovery Block” as a syntax for conversations. The syntax appropriates that of the

recovery block . What would otherwise be a recovery block, becomes part of a

conversation designated by a conversation identifier. The primary and alternate activities

of the recovery block become that process’ primary and alternate activities during the

conversation, and the recovery block’s acceptance test becomes that portion of the

conversation’s acceptance test appropriate to this process. The conversation’s acceptance test

is evaluated after the last conversant reaches the end of its primary or alternate. If any of

the processes fail its acceptance test, all conversants are rolled back.

4

5

6 Kim has examined several more possible syntaxes for conversations . His approaches

assume the use of monitors as the method of communication among processes. He examines

the situation from two philosophies toward grouping. In one scheme, the conversing

activities are grouped with their respective processes’ source code, but are well marked at

those locations. In another scheme, the conversing actions of the several processes are

grouped into one place so that the conversation has a single location in the source code. The

issue he is addressing is whether it is better to group the text of a conversation and scatter

the text of a process or to group the text of a process and scatter the text of a conversation.

A third scheme attempts to resolve the differences between the first two.

7

3. ISSUES U?TH CONVERSATIONS

Desertion is the failure of a process to enter a conversation or arrive at the acceptance

test when other processes expect its presence. Whether the process will never enter the

- 3 -

conversation, is simply late, or enters the conversation only to take too long or never arrive

at the acceptance test, does not matter to the others if they have real-time deadlines to

meet. Each process may have its own view of how long it is willing to wait, especially

since processes may enter a conversation asynchronously. Whether they protect inter-

process communications or sequential parts of processes, acceptance tests must be reached

and reached on time for the results to be useful. Meeting real-time deadlines is as

important to providing the specified service as is producing correct output. In order to deal

effectively with desertion, especially in critical systems, some form of timing specification

on communication and on sequential codes is vital.

When it needs to communicate, a process enters a conversation and stays there, perhaps

through many alternate algorithms, until the communication is completed successfully.

The same group of processes are required to be in the alternate interactions as were in the

primary. The recovery action merely sets up the communication situation again. In the

original form of conversation, once a process enters the construct, it cannot break out and

must continue trying with the same set of other processes, including one or more which

may be incapable of correct operation. In practice, when a process fails in a primary

attempt a t communication with one group of processes to achieve its goal, it may want to

attempt to communicate with an entirely different group as an alternate strategy for

achieving that goal: in fact, different processes might make different numbers of attempts

a t communicating. Conversations do not allow this, although i t is not desertion if it is

systematic and intended.

-
-_ In a conversation, once individually rolled back and reconfigured, the same set of

conversant processes attempt to communicate again, and eventually reach the same

acceptance test again. True independence of algorithms between primary and a1 ternates,

within the context of backward error recovery, might require very different acceptance

tests for each algorithm, particularly if some of them provide significantly degraded

- 4 -

services. A single test for achievement of a process' goal at a particular point in its text

would of necessity have to be general enough to pass results of the most degraded

algorithm. This might be too general to enable i t to catch errors produced by other, more

strict, algorithms. These considerations suggest the need for separate acceptance tests

specifically tailored for each of the primary and alternate algorithms.

It must also be remembered, that although each process has its own reasons for

participating, there is a goal for the group of processes as well. Rather than combine the

individual goals of the many participants with the group goal in a single acceptance test

(perhaps allowing the programmer to forget some), and rather than replicating the test for

achievement of the group goal within every participant, there should be a separate

acceptance test for each participant and another for the group.

A final problem with the conversation concept as it was originally defined, is that if a

process runs out of alternates, no scheme is provided or mentioned for dealing with the

situation.

4. THE DIALOG

We define a dialog to be an occurrence in which a set of processes:

establish individual recovery points,

communicate among themselves and with no others,

determine whether all should discard their recovery points and proceed or restore
their states from their recovery points and proceed, and

follow this determination.

Success of a dialog is the determination that all participating processes should discard

their recovery points and proceed. Failure of a dialog is the determination that they should

restore their states from their recovery points and proceed. Nothing is said about what

- 5 -

should happen af ter success or failure; in either case the dialog is complete. Dialogs may be

properly nested, in which case the set of processes participating in an inner dialog is a

subset of those participating in the outer dialog. Success or failure of an inner dialog does

not necessarily imply success or failure of the outer dialog. Figure 1 shows a set of three

processes communicating within a dialog.

We introduce the discuss statement as a syntactic form that can be used to denote a

dialog. Figure 2 shows the general form of a discuss statement. The dialog-name associates

a particular discuss statement with the discuss statements of the other processes

participating in this dialog, dynamically determining the constituents of the dialog. This

association cannot in general be known statically. At execution time, when control enters a

-
Time

- E s t a b l i s h Recovery P o i n t

- D i s c a r d Recovery P o i n t

- In te r -process Communication

Three Pmcesses Communicating in a Dialog
Figure 1

- 6 -

DISCUSS dialog-name BY

sequence-of-statements

TO ARRANGE Boolean-expression;

A DISCUSS Statement
Figure 2

process’ discuss statement with a given dialog name, that process becomes a participant in a

dialog. Other participants are any other processes which have already likewise entered

discuss statements with the same dialog name and have not yet left, and any other processes

which enter discuss statements with the same dialog name before this process leaves the

dialog. Either all participants in a dialog leave i t with their respective discuss statements

successful, or all leave with them failed, Le. the dialog succeeds or fails.

The sequence of statements in the discuss statement represent the actions which are

this process’ part of the group’s actions within their dialog. Any inter-process

communication must take place within this sequence of statements (Le. be protected by a

dialog). The discuss statement fails if an exception is raised within it, if an enclosed

dialog-sequence (see below) fails, or if any timing constraint is violated.

The Bookan-expression is an acceptance test on the results of executing the sequence

of statements. It represents the process’ local goal for the interactions in the dialog. It is

evaluated after execution of the sequence of statements. If this Boolean expression or that

in the corresponding discuss statement of any other process participating in this dialog is

evaluated false, the discuss statement of each participant in the dialog fails. If all of the

local acceptance tests succeed. the common goal of the group, i.e. the ghbal acceptance test is

evaluated. If this common goal is true, the corresponding discuss statements of all

participants in the dialog succeed; otherwise they fail. Syntactically, the common goal is

- 7 -

specified by a parameterless Boolean function with the same name as the dialog name in the

discuss statement.
-. _ _ . -. - - -

We stated that the participants in a particular dialog cannot be known statically.

There may be, say, three processes whose texts contain references to a particular dialog

name. If two of them enter a dialog using that name, questions might arise about

participation of the third. The third process may be executing some other portion of its

code so that it is unlikely to enter a dialog of that name in the near future. If the two

processes reach and pass their acceptance tests, they, being the only participants in the

dialog, can leave it -- the third process is not necessary to the dialog, so is not a deserter. If

the dialog fails due to an acceptance test or a timeout (see below). the problem is not

guaranteed to be the absence of the third process, so again it is not (necessarily) a deserter.

If the dialog has no time limit specified (see below), that had to be by conscious effort of the

programmer, so the two processes becoming "hung" in the dialog while waiting for the third

was not unplanned.

The dialog names used in discuss statements are required to be declared in dialog

declarations. The general form of a dialog declaration is:

DIALOG function-name SHARES (nome-list) ;

The function-name is the identifier being declared as a dialog name (and the name of the

function defining the global acceptance test). The names mentioned in the num-list are

the names of shared variables which will be used within dialogs that use this dialog name.

This includes variables used within the function that implements the global acceptance

test. Only a variable so named may be used within a discuss statement, and then only

within discuss statements using a dialog name with that variable's name in its dialog

declaration. The significance of these ruies is that the set of shared variabies can be locked

by the compiler and execution-time support system to prevent smuggling. In effect, the

actions of the dialog's participants are made to appear atomic to other processes with respect

- 8 -

to these variables. (Our implementation, not described here, also prevents smuggling via

messages or rendezvous).

The Boolean function named by the dialog name is evaluated after all processes in the

dialog have evaluated their respective Boolean expressions and they all evaluate to true. It

is only evaluated once for an instance of the dialog; i.e. it is not evaluated by each

participating process. Thus no process can leave a dialog until all processes currently in

that dialog leave with the same success, and success involves the execution of both a local

and a global acceptance test.

5. THE COLLOQUY

A colloquy is a semantic construct that solves the problems of conversations. Unlike

conversations, the rules of order and participation are well-defined and explicitly laid out.

A colloquy is a collection of dialogs. At execution time, a dialog is an interaction

among processes. Each individual process has its own local goal for participating in a dialog,

but the group has a larger global goal; usually providing some part of the service required

of the entire system. I f , for whatever reason, any of the local goals or the global goal is not

achieved, a backward error recovery strategy calls for the actions of the particular dialog to

be undone. In attempting to ensure continued service from the system, each process may

make another attempt at achieving its original local goal, or some modifid local goal

through entry into a diferent dialog. Each of the former participants of the now defunct

dialog may choose to interact with an entirely separate group of processes for its alternate

algorithm. The altered constituency of the new dialogk) most certainly requires new

statementisi of the originai giobai goai. The sei uf Jiaiogs wiiiiii take piace diiiing these

efforts on the processes’ part is a colloquy. A set of four processes engaged in a colloquy that

involves three dialogs is shown in Figure 3.

- 9 -

. .
I I

r

Time

Four Processes in a Colloquy of Three Dialogs
Figure 3

A colloquy, like a dialog or a rendezvous in Ada, does not exist syntactically but is

entirely an execution-time concept. The places where the text of a process statically

announces entry into colloquys are marked by a variant of the Ada select statement called

a dialog-sequence.

The general form of a dialog-sequence is shown in Figure 4. At execution time, when

control reaches the select keyword, a recovery point is established for that process. The

process then attempts to perform the activities represented in Figure 4 by a t tempt-1 . The

attempt is actually a discuss statement followed by a sequence of statements. To ensure

proper nesting of dialogs and colloquys, a discuss statement may appear only in this

context. If the performance of these activities is successful, control continues with the

statements following the dialog-sequence. The term “success“ here means that no

defensive, acceptability, nr t h i n g checks occurring within the attempt detected an error,

and that no exceptions (if the language has exceptions) were propagated out to the attempt’s

discuss statement. If the attempt was not successful, the process’ state is restored from the

- 10 -

SELECT
attempt-1

a t t empt-2

at tempt-3

OR

OR. . - _

TIMEOUT s imp1 e-express i on
sequence -of-statements

ELSE

END SELECT;
sequence -of-statements

Dialog-Sequence
Figure 4

recovery point and t h e other attempts will be tried in order. Thus, the dialog-sequence

enables the programmer to provide a primary and a list of alternate algorithms by which

the process may achieve its goals at that locus of its text.

Exhaustion of all attempts with no success brings control to the else part after

restoration of the process' state from the recovery point. The else part contains a sequence

of statements which allows the programming of a "last ditch" algorithm for the process to

achieve its goal. If this sequence of statements is successful, control continues after the

dialog-sequence. If not, or if there was no statement sequence, the surrounding attempt

fails.

Timing constraints can be imposed on colloquys (and hence on dialogs). Any

participant in a colloquy can specify a timing constraint which consists of a simple

expression on the timeout part of the dialog-sequence. Absence of a timing constraint

m u s t he made explicit by replacing t h e simple expression with the keyword never. A

timing constraint specifies an interval during which the process may execute as many of the

attempts as necessary to achieve success in one of them. Should an attempt achieve success

- 11 -

or the list of attempts be exhausted without success before expiration of the interval,

further actions are the same as for dialog-sequences without timing specifications.
-. - - - - - - - .- - - _ _ . - - -.__ . - - -

However, if the interval expires, the current attempt fails, the process' state is restored

from the recovery point, and execution continues at the sequence of statements in the

timeout part. The attempts of the other processes in the same dialog also fail but their

subsequent actions are determined by their own dialog-sequences. If several participants in

a particular colloquy have timing constraints, expiration of one has no effect on the other

timing constraints. The various intervals expire in chronological order. As with the else

part, the timeout part allows the programming of a "last ditch" algorithm for the process to

achieve its goal, and is really a form of forward recovery since its effects will not be

undone, at least at this level. If the sequence of statements in the timeout part is

successful, control continues after the dialog-sequence. If not, or if there were no

statement sequence, the surrounding attempr fails.

In any attempt, a statement sequence (which is logically outside the dialog-sequence)

can follow the discuss statement to provide specialized post-processing after the recovery

point is discarded if the attempt succeeds. I t is not subject to this dialog-sequence's timing

constraint.

The programmer is reminded by its position after the timeout part that the else part

is not protected by the timer, and that it is reached only after other (potentially time-

consuming) activities have taken place. The structure of the dialog-sequence also requires

no acceptance check on these activities. The implication of these two observations is that

the last ditch activities need to be programmed very carefully.

A f a i l statement may occur only within a sequence of statements contained within a

dialog-sequence. Execution of a fail statement causes the encompassing attempt to fail.

The fail statement is intended for checking within an attempt. For example, it can be used

to program explicit defensive checks on inputs such as:

- 12 -

IF input-variable < lower-bound THEN

END IF;
FAIL;

I t can also be used to simplify the logical paths out of an attempt should some internal case

analysis reach an "impossible" path. With the fail statement, the programmer does not have

to make the code for the attempt complicated by providing jumps or other paths to the

acceptance test or to insure that some part of the test is always false for such a special

path. The fail statement can also be used to provide sequences of statements for the else

and t imeout parts that make failure explicit rather than implicit (i.e. failure is indicated

by their absence).

6. OTHER LANGUAGE FACILITIES

8 9 Dialog-sequences can be used to construct deadlines , generalized exception handlers ,

recovery blocks, traditional conversations, exchanges", and s-conversations". Thus the

colloquy is at least as powerful as each of these previously proposed constructs for

provision of fault tolerance. For the sake of brevity, we will illustrate only the

programming of a recovery block.

A recovery block is a special case of a colloquy in which there is only one process

participating, every dialog uses the same acceptance test, there is no timing requirement,

and there are no "last ditch" algorithms to prevent propagation of failures of the construct.

Figure 5 shows a dialog-sequence that is equivalent to the recovery block shown in Figure

6. The use of the fail statement in the dialog-sequence makes explicit the propagation of

the error t o a surrounding context just as does the else e r ror closing of the recovery block.

In the dialog-sequence. the Boolean expression is repeated in the discuss statements rather

than gathered into the dialog function because we want to be able to include local variables

in i t as a programmer of the recovery block would. Should an error be detected in

statement-sequence-1 , the state is restored and statement-sequence-2 is executed, and SO on.

- 13 -

FUNCTION abc RETURNS boolean IS BEGIN RETURN TRUE; END abc;

DIALOG abc SHARES () ;
. . . .

. . .

SELECT
DISCUSS abc BY

TO ARRANGE boolean-expression-1;
st at ement-sequence-1

OR
DISCUSS abc BY

TO ARRANGE boolean-expression-1;
statement-sequence-2

OR
DISCUSS abc BY

TO ARRANGE boolean-expression-1;
statement-sequence-3

TIMEOUT NEVER;

ELSE

END SELECT;
FAIL; - Omitting this line does not change the semantics.

Specification of Colloquy for a Recovery Block
Figure 5

ENSURE boolean-expression-1 BY
statement-sequence-1

ELSE BY
statemen t-sequence-2

ELSE BY
statement-sequence-3

ELSE ERROR;

A Recovery Block
Figure 6

Finally, should an error be detected in stotement,sequence-3, the state is restored and the

error is signaled in a surrounding context. An error may be detected by evaluation of

- 14 -

boo I eon-express i on-1 to false, or by violation of some underlying interface (such as raising
. .__

of an exception).

7. CONCLUSIONS

We have introduced a new linguistic construct, the colloquy, which solves the

problems identified in the earlier proposal, the conversation. We have shown that the

colloquy is a t least as powerful as recovery blocks, but i t is also as powerful as all the other

language facilities proposed for other situations requiring backward error recovery:

recovery blocks, deadlines, generalized exception handlers, traditional conversations, s-

conversations, and exchanges.

The major features that distinguish the colloquy are:

The inclusion of explicit and general timing constraints. This allows processes to

protect themselves against any difficulties in communication that might prevent them

from meeting real-time deadlines. It also effectively deals with the problem of

deserter processes.

The use of a two-level acceptance test. This allows much more powerful error

detection because i t allows the tailoring of acceptance tests to specific needs.

The reversal of the order of priority of alternate communication attempts and of

recovery points. This allows processes to choose the participants in any alternate

algorithms rather than being required to deal with a single set of processes.

A complete and consistent syntax that is presented as extensions to Ada but could be

modified and included in any suitable programming language.

Sample programs that have been written hut not executed using the coiioquy snow

that extensive backward error recovery can be included in these programs simply and

elegantly. We are presently implementing these ideas in an experimental Ada testbed.

- 15 -

This paper is not a formal statement of these concepts. The reader may correctly feel

that important detail has been omitted. We are only able to present informally the key

concepts in a paper of this length. For more details, see [12].

8. ACKNOWLEDGEMENTS

This work was sponsored by NASA grant number NAG1-260 and has been cleared for

publication by the sponsoring organization.

REFERENCES

(1) Randell B., "System Structure for Software Fault Tolerance," ZEEE Transactions on

Software Engineering, SE-1(2), pp. 220-232, June 1975.

(2) Ref erettce Manual f o r the Ada Programming Language, ANSI/MIL-STD-l815A, 22

January 1983.

(3) Lomet D.B., "Process Structuring, Synchronization and Recovery Using Atomic

Actions," SZGPLAN Notices, 12(3). pp. 128-137, March 1977.

(4) Russell D.L., M.J. Tiedeman, "Multiprocess Recovery Using Conversations," Digest of

Papers FTCS-9: Ninth Annual Symposium on Fault-Tolerant Computing, p. 106, June

1979.

(5) Horning J.J., et al., "A Program Structure for Error Detection and Recovery," pp. 171-

187 in Lecture Notes in Computer Science Vol. 16, ed. E. Gelenbe and C. Kaiser,

Springer-Verlag, Berlin, 1974.

(6) Kim K.H., "Approaches to Mechanization of the Conversation Scheme Based on

Monitors," ZEEE Transactions on Software Engineering, SE-8(3), pp. 189-197, May

1982.

(7) Per Brinch Hansen, The Architecture of Concurrent Programs, Prentice-Hall,

Englewood Cliffs, NJ, 1977.

(8) Campbell R.H., K.H. Horton, G.G. Belford, "Simulations of a Fault-Tolerant Deadline

Mechanism," Digest o f Papers FTCS-9: Ninth Annual Symposium on Fault-Tolerant

Computing, pp. 95-101, 1979.

- 17 -

(9) Salzman E.J., An Experiment in Producing Highly Reliable Software, MSc.

Dissertation, Computing Laboratory, University of Newcastle upon Tyne, 1978.

(10) Anderson T., J.C. Knight, "A Framework for Software Fault Tolerance in Real-Time

Systems," IEEE Transactions on Software Engineering, SE-9(3), pp. 355-364, May

1983.

(11) Jalote P., R.H. Campbell, "Fault Tolerance Using Communicating Sequential Processes,"

Digest of Papers FTCS-14: Fourteenth International Conference on Fault-Tolerant

Computing, pp. 347-352,1984.

(12) Gregory S.T., Programming Language Facilities f o r Comprehensive Software Fault-

Tolerance in Distributed Real-Time Systems, Ph.D. Dissertation, Department of

Computer Science. University of Virginia, 1985.

- 18 -

Copy No.

1 - 3

*
4 - 5

6 - 7

8

9 - 10

11

DISTRIBUTION LIST

National Aeronautics and
Space Administration

Langley Research Center
Hampton, VA 23665
Attention: Mr. Edmond H. Senn

ACD, MS 125

NASA Scientific and Technical Information

P. 0. Box 8757
Baltimore/Washington International Airport
Baltimore, MD 21240

Facility

J. C. Knight

A. Catlin

E. H. Pancake
Clark Hall

SEAS files

_ _
One reproducible copy

6435:cms

