53 research outputs found

    Effect of increased pCO2 on the planktonic metabolic balance during a mesocosm experiment in an Arctic fjord

    Get PDF
    The effect of ocean acidification on the balance between gross community production (GCP) and community respiration (CR) (i.e., net community production, NCP) of plankton communities was investigated in summer 2010 in Kongsfjorden, west of Svalbard. Surface water, which was characterized by low concentrations of dissolved inorganic nutrients and chlorophyll a (a proxy of phytoplankton biomass), was enclosed in nine mesocosms and subjected to eight pCO2 levels (two replicated controls and seven enhanced pCO2 treatments) for one month. Nutrients were added to all mesocosms on day 13 of the experiment, and thereafter increase of chlorophyll a was provoked in all mesocosms. No clear trend in response to increasing pCO2 was found in the daily values of NCP, CR, and GCP. For further analysis, these parameters were cumulated for the following three periods: phase 1 – end of CO2 manipulation until nutrient addition (t4 to t13); phase 2 – nutrient addition until the second chlorophyll a minimum (t14 to t21); phase 3 – the second chlorophyll a minimum until the end of this study (t22 to t28). A significant response was detected as a decrease of NCP with increasing pCO2 during phase 3. CR was relatively stable throughout the experiment in all mesocosms. As a result, the cumulative GCP significantly decreased with increasing pCO2 during phase 3. After the nutrient addition, the ratios of cumulative NCP to cumulative consumption of NO3 and PO4 showed a significant decrease during phase 3 with increasing pCO2. The results suggest that elevated pCO2 influenced cumulative NCP and stoichiometric C and nutrient coupling of the plankton community in a high-latitude fjord only for a limited period. However provided that there were some differences or weak correlations between NCP data based on different methods in the same experiment, this conclusion should be taken with caution

    Monitoring vooroeververdediging Oosterschelde 2013

    Get PDF
    Dit rapport beschrijft de uitkomsten van de eco(toxico)logische monitoring van de vooroeververdediging in de Oosterschelde. Aanleiding hiervoor is dat Rijkswaterstaat sinds 2009 op locaties met voortschrijdende erosie in de Ooster- en Westerschelde bestortingen met staalslakken en breuksteen uitvoert op de vooroever van de dijken om de veiligheid tegen overstromingen te kunnen blijven garanderen. Het doel van deze monitoring is het bepalen van de samenstelling en biodiversiteit van de aanwezige levensgemeenschappen op harde en zachte substraten, en de bepaling van de gehalten aan zware metalen in mosselen en oesters op de nieuwe vooroever en referentie-locaties. Dit is in 2013 gedaan voor de locatie Zeelandbrug (oost/midden/west), waar voor het vierde opeenvolgende jaar is gemonitord na de bestorting in 2009. Daarnaast is de nulsituatie in kaart gebracht voor de locatie Zierikzee die in 2014 bestort zal worden. Ook zijn er verschillende referentie-locaties in de Oosterschelde meegenomen

    Het 30e bestuur der B.I.L.

    Get PDF
    Maak kennis met het 30ste bestuur der B.I.L.! Zij zullen komend jaar jullie aanspreekpunt zijn in de kamers in Leiden en Den Haag. Om jullie alvast een beeld te geven, hebben we ze gevraagd zichzelf kort voor te stellen

    Giant sponge grounds of Central Arctic seamounts are associated with extinct seep life

    Get PDF
    The Central Arctic Ocean is one of the most oligotrophic oceans on Earth because of its sea-ice cover and short productive season. Nonetheless, across the peaks of extinct volcanic seamounts of the Langseth Ridge (87°N, 61°E), we observe a surprisingly dense benthic biomass. Bacteriosponges are the most abundant fauna within this community, with a mass of 460 g C m-2 and an estimated carbon demand of around 110 g C m-2 yr-1, despite export fluxes from regional primary productivity only sufficient to provide <1% of this required carbon. Observed sponge distribution, bulk and compound-specific isotope data of fatty acids suggest that the sponge microbiome taps into refractory dissolved and particulate organic matter, including remnants of an extinct seep community. The metabolic profile of bacteriosponge fatty acids and expressed genes indicate that autotrophic symbionts contribute significantly to carbon assimilation. We suggest that this hotspot ecosystem is unique to the Central Arctic and associated with extinct seep biota, once fueled by degassing of the volcanic mounts

    The important role of sponges in carbon and nitrogen cycling in a deep-sea biological hotspot

    Get PDF
    Deep-sea sponge grounds are hotspots of biodiversity, harbouring thriving ecosystems in the otherwise barren deep sea. It remains unknown how these sponge grounds survive in this food-limited environment. Here, we unravel how sponges and their associated fauna sustain themselves by identifying their food sources and food-web interactions using bulk and compound-specific stable isotope analysis of amino and fatty acids. We found that sponges with a high microbial abundance had an isotopic composition resembling organisms at the base of the food web, suggesting that they are able to use dissolved resources that are generally inaccessible to animals. In contrast, low microbial abundance sponges had a bulk isotopic composition that resembles a predator at the top of a food web, which appears to be the result of very efficient recycling pathways that are so far unknown. The compound-specific-isotope analysis, however, positioned low-microbial abundance sponges with other filter-feeding fauna. Furthermore, fatty-acid analysis confirmed transfer of sponge-derived organic material to the otherwise food-limited associated fauna. Through this subsidy, sponges are key to the sustenance of thriving deep-sea ecosystems and might have, due to their ubiquitous abundance, a global impact on biogeochemical cycles. Read the free Plain Language Summary for this article on the Journal blog

    The female perspective of personality in a wild songbird: repeatable aggressiveness relates to exploration behaviour

    Get PDF
    ABSTRACT: Males often express traits that improve competitive ability, such as aggressiveness. Females also express such traits but our understanding about why is limited. Intraspecific aggression between females might be used to gain access to reproductive resources but simultaneously incurs costs in terms of energy and time available for reproductive activities, resulting in a trade-off. Although consistent individual differences in female behaviour (i.e. personality) like aggressiveness are likely to influence these reproductive trade-offs, little is known about the consistency of aggressiveness in females. To quantify aggression we presented a female decoy to free-living female great tits (Parus major) during the egg-laying period, and assessed whether they were consistent in their response towards this decoy. Moreover, we assessed whether female aggression related to consistent individual differences in exploration behaviour in a novel environment. We found that females consistently differed in aggressiveness, although first-year females were on average more aggressive than older females. Moreover, conform life history theory predictions, ‘fast’ exploring females were more aggressive towards the decoy than ‘slow’ exploring females. Given that personality traits are often heritable, and correlations between behaviours can constrain short term adaptive evolution, our findings highlight the importance of studying female aggression within a multivariate behavioural framework

    Viruses exacerbating chronic pulmonary disease: the role of immune modulation

    Get PDF
    Chronic pulmonary diseases are a major cause of morbidity and mortality and their impact is expected to increase in the future. Respiratory viruses are the most common cause of acute respiratory infections and it is increasingly recognized that respiratory viruses are a major cause of acute exacerbations of chronic pulmonary diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. There is now increasing evidence that the host response to virus infection is dysregulated in these diseases and a better understanding of the mechanisms of abnormal immune responses has the potential to lead to the development of new therapies for virus-induced exacerbations. The aim of this article is to review the current knowledge regarding the role of viruses and immune modulation in chronic pulmonary diseases and discuss avenues for future research and therapeutic implications

    Interaction of Pattern Recognition Receptors with Mycobacterium Tuberculosis.

    Get PDF
    Tuberculosis (TB) is considered a major worldwide health problem with 10 million new cases diagnosed each year. Our understanding of TB immunology has become greater and more refined since the identification of Mycobacterium tuberculosis (MTB) as an etiologic agent and the recognition of new signaling pathways modulating infection. Understanding the mechanisms through which the cells of the immune system recognize MTB can be an important step in designing novel therapeutic approaches, as well as improving the limited success of current vaccination strategies. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. Innate immune responses along with the involvement of distinct inflammatory mediators and cells play an important role in the host defense against the MTB. Several classes of pattern recognition receptors (PRRs) are involved in the recognition of MTB including Toll-Like Receptors (TLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs) linked to inflammasome activation. Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down-stream signaling proteins play critical roles in the initiation of the immune response in the pathogenesis of TB. The inflammasome pathway is associated with the coordinated release of cytokines such as IL-1β and IL-18 which also play a role in the pathogenesis of TB. Understanding the cross-talk between these signaling pathways will impact on the design of novel therapeutic strategies and in the development of vaccines and immunotherapy regimes. Abnormalities in PRR signaling pathways regulated by TB will affect disease pathogenesis and need to be elucidated. In this review we provide an update on PRR signaling during M. tuberculosis infection and indicate how greater knowledge of these pathways may lead to new therapeutic opportunities
    corecore