30 research outputs found

    Interaction of developmental factors and ordinary stressful life events on brain structure in adults

    Get PDF
    An interplay of early environmental and genetic risk factors with recent stressful life events (SLEs) in adulthood increases the risk for adverse mental health outcomes. The interaction of early risk and current SLEs on brain structure has hardly been investigated. Whole brain voxel-based morphometry analysis was performed in N = 786 (64.6% female, mean age = 33.39) healthy subjects to identify correlations of brain clusters with commonplace recent SLEs. Genetic and early environmental risk factors, operationalized as those for severe psychopathology (i.e., polygenic scores for neuroticism, childhood maltreatment, urban upbringing and paternal age) were assessed as modulators of the impact of SLEs on the brain. SLEs were negatively correlated with grey matter volume in the left medial orbitofrontal cortex (mOFC, FWE p = 0.003). This association was present for both, positive and negative, life events. Cognitive-emotional variables, i.e., neuroticism, perceived stress, trait anxiety, intelligence, and current depressive symptoms did not account for the SLE-mOFC association. Further, genetic and environmental risk factors were not correlated with grey matter volume in the left mOFC cluster and did not affect the association between SLEs and left mOFC grey matter volume. The orbitofrontal cortex has been implicated in stress-related psychopathology, particularly major depression in previous studies. We find that SLEs are associated with this area. Important early life risk factors do not interact with current SLEs on brain morphology in healthy subjects

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Measurement(s) : temperature of water, temperature profile Technology Type(s) : digital curation Factor Type(s) : lake location, temporal interval Sample Characteristic - Environment : lake, reservoir Sample Characteristic - Location : global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14619009Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    The Role of Cobalt Phosphate in Enhancing the Photocatalytic Activity of alpha-Fe2O3 toward Water Oxidation

    No full text
    Transient absorption spectroscopy was used to probe the dynamics of photogenerated charge carriers in alpha-Fe2O3/CoOx nanocomposite photoelectrodes for water splitting. The addition of cobalt-based electrocatalysts was observed to increase the lifetime of photogenerated holes in the photoelectrode by more than 3 orders of magnitude without the application of electrical bias. We therefore propose that the enhanced photoelectrochemical activity of the composite electrode for water photooxidation results, at least in part, from reduced recombination losses because of the formation of a Schottky-type heterojunction

    Activation Energies for the Rate-Limiting Step in Water Photooxidation by Nanostructured alpha-Fe2O3 and TiO2

    No full text
    Competition between charge recombination and the forward reactions required for water splitting limits the efficiency of metal-oxide photocatalysts. A key requirement for the photochemical oxidation of water on both nanostructured alpha-Fe2O3 and TiO2 is the generation of photoholes with lifetimes on the order of milliseconds to seconds. Here we use transient absorption spectroscopy to directly probe the long-lived holes on both nc-TiO2 and alpha-Fe2O3 in complete PEC cells, and we investigate the factors controlling this slow hole decay, which can be described as the rate-limiting step in water oxidation. In both cases this rate-limiting step is tentatively assigned to the hole transfer from the metal oxide to a surface-bound water species. We demonstrate that one reason for the slow hole transfer on alpha-Fe2O3 is the presence of a significant thermal barrier, the magnitude of which is found to be independent of the applied bias at the potentials examined. This is in contrast to nanocrystalline nc-TiO2, where no distinct thermal barrier to hole transfer is observed

    Dynamics of photogenerated holes in nanocrystalline alpha-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy

    No full text
    Transient absorption spectroscopy on the mu s-s time scale is used to monitor the yield and decay dynamics of photogenerated holes in nanocrystalline hematite photoanodes. In the absence of a positive applied bias, these holes are observed to undergo rapid electron-hole recombination. The application of a positive bias results in the generation of long-lived (3 +/- 1 s lifetime) photoholes

    Effects of school-based interventions on motivation towards physical activity in children and adolescents: A systematic review and meta-analysis

    Get PDF
    Introduction Assuming that motivation is the key to initiate and sustain beneficial health behaviors, the aim of this systematic review was to analyze the effects of school-based physical activity interventions on a variety of motivational outcomes towards PA in school-aged children and adolescents. Methods A comprehensive literature search was carried out in six electronic databases to identify randomized controlled trials and quasi-experimental trials examining the effects of PA interventions implemented during the regular school day, e.g., during physical education lessons or lunch breaks. Primary outcomes of interest were students' motivation, basic psychological needs, goal orientation, enjoyment, and motivational teaching climate in physical education. Meta-analyses were conducted for these outcomes using Comprehensive Meta-analysis software. Secondarily, intervention effects on students' PA behaviors were examined and the findings summarized narratively. Methodological quality of studies was evaluated using the Cochrane Collaboration's tool for assessing risk of bias for randomized trials; certainty of evidence on outcome level was evaluated using the GRADE approach. Results In total, 57 studies carried out between 2001 and 2018 were included in this review. Sixteen individual meta-analyses were performed and revealed significant pooled effects for the outcomes enjoyment (g = 0.310), perceived autonomy (g = 0.152), identified regulation (g = 0.378), intrinsic motivation (g = 0.419), self-determination index (g = 0.672), task/mastery climate (g = 0.254), ego/performance climate (g = −0.438), autonomy supportive climate (g = 0.262), task goal orientation (g = 1.370), ego goal orientation (g = −0.188). The narrative data synthesis indicated an increase in students' PA behavior. The overall risk of bias was high across all studies and certainty of evidence of meta-analyzed outcomes ranged from very low to moderate. Moderate certainty of evidence was found for ego/performance climate and ego goal orientation. Conclusions: Meta-analyses suggest that school-based PA interventions may be effective in increasing a variety of motivational outcomes. However, the certainty of evidence was limited in the majority of outcomes. Further research is needed to identify effective intervention strategies that increase students’ motivation towards PA.info:eu-repo/semantics/publishedVersio

    Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes

    No full text
    Photogenerated charge carrier dynamics are investigated as a function of applied bias in a variety of different hematite photoanodes for solar water oxidation. Transient absorption spectroscopy is used to probe the photogenerated holes, while transient photocurrent measures electron extraction. We report a general quantitative correlation between the population of long-lived holes and the photocurrent amplitude. The yield of long-lived holes is shown to be determined by the kinetics of electron-hole recombination. These recombination kinetics are shown to be dependent upon applied bias, exhibiting decay lifetimes ranging from ca 5 mu s to 3 ms (at -0.4 and +0.4 V versus Ag/AgCl, respectively). For Si-doped nanostructured hematite photoanodes, electron extraction and electron-hole recombination are complete within similar to 20 ms, while water oxidation is observed to occur on a timescale of hundreds of milliseconds to seconds. The competition between electron extraction and electron-hole recombination is electron-density-dependent: the effect on recombination of applied bias and excitation intensity is discussed. The timescale of water oxidation is independent of the concentration of photogenerated holes, indicating that the mechanism of water oxidation on hematite is via a sequence of single-hole oxidation steps

    Isogenic Mammary Models of Intraductal Carcinoma Reveal Progression to Invasiveness in the Absence of a Non-Obligatory In Situ Stage

    No full text
    In breast cancer, progression to invasive ductal carcinoma (IDC) involves interactions between immune, myoepithelial, and tumor cells. Development of IDC can proceed through ductal carcinoma in situ (DCIS), a non-obligate, non-invasive stage, or IDC can develop without evidence of DCIS and these cases associate with poorer prognosis. Tractable, immune-competent mouse models are needed to help delineate distinct mechanisms of local tumor cell invasion and prognostic implications. To address these gaps, we delivered murine mammary carcinoma cell lines directly into the main mammary lactiferous duct of immune-competent mice. Using two strains of immune-competent mice (BALB/c, C57BL/6), one immune-compromised (severe combined immunodeficiency; SCID) C57BL/6 strain, and six different murine mammary cancer cell lines (D2.OR, D2A1, 4T1, EMT6, EO771, Py230), we found early loss of ductal myoepithelial cell differentiation markers p63, α-smooth muscle actin, and calponin, and rapid formation of IDC in the absence of DCIS. Rapid IDC formation also occurred in the absence of adaptive immunity. Combined, these studies demonstrate that loss of myoepithelial barrier function does not require an intact immune system, and suggest that these isogenic murine models may prove a useful tool to study IDC in the absence of a non-obligatory DCIS stage—an under-investigated subset of poor prognostic human breast cancer
    corecore