8 research outputs found

    Fish allergy management: from component-resolved diagnosis to unmet diagnostic needs

    Get PDF
    Purpose of review Fish is a common elicitor of IgE-mediated food allergy. Fish includes a large variety of foods, in terms of species and food processing, with marked distinction in local diets around the globe. Fish-allergic patients present with phenotypic diversity and major differences in levels of clinical cross-reactivity, features that pose an important challenge for the clinical diagnosis and management. Recent findings Parvalbumin is the major fish allergen. However, a single molecule is not sufficient but several homologs, allergens different from parvalbumin and allergen extracts, are needed for IgE-based diagnosis. Summary Parvalbumin-specific IgE are markers for clinical cross-reactions. Added value is provided by IgE typing to parvalbumin homologs from distantly related fish. IgE cosensitization profiles (parvalbumin, enolase, aldolase) are referred as severity markers. The allergen panel seems to be not yet complete why fish extracts still play a crucial role inserum IgE analysis. Further clinical validation of a multiplex approach in molecular fish allergy diagnosis is needed for striving to avoid unnecessary food restrictions and in a further sense, improved patient care.Ministry of Research, Luxembourg (JK, AK), the PRIDE program grant (PRIDE/11012546/NEXTIMMUNE) ;Fonds National de la Recherche (FNR), Luxembourg (JK, AK) and the Personalized Medicine Consortium Luxembourg (JK, AK). This work received national funds through FCT - Foundation for Science and Technology through project UID/Multi/04326/2019. FCT PhD grant SFRH/BD/136319/2018.info:eu-repo/semantics/publishedVersio

    IgE-mediated peanut allergy: Current and novel predictive biomarkers for clinical phenotypes using multi-omics approaches

    Get PDF
    Food allergy is a collective term for several immune-mediated responses to food. IgE-mediated food allergy is the best-known subtype. The patients present with a marked diversity of clinical profiles including symptomatic manifestations, threshold reactivity and reaction kinetics. In-vitro predictors of these clinical phenotypes are evasive and considered as knowledge gaps in food allergy diagnosis and risk management. Peanut allergy is a relevant disease model where pioneer discoveries were made in diagnosis, immunotherapy and prevention. This review provides an overview on the immune basis for phenotype variations in peanut-allergic individuals, in the light of future patient stratification along emerging omic-areas. Beyond specific IgE-signatures and basophil reactivity profiles with established correlation to clinical outcome, allergenomics, mass spectrometric resolution of peripheral allergen tracing, might be a fundamental approach to understand disease pathophysiology underlying biomarker discovery. Deep immune phenotyping is thought to reveal differential cell responses but also, gene expression and gene methylation profiles (eg, peanut severity genes) are promising areas for biomarker research. Finally, the study of microbiome-host interactions with a focus on the immune system modulation might hold the key to understand tissue-specific responses and symptoms. The immune mechanism underlying acute food-allergic events remains elusive until today. Deciphering this immunological response shall enable to identify novel biomarker for stratification of patients into reaction endotypes. The availability of powerful multi-omics technologies, together with integrated data analysis, network-based approaches and unbiased machine learning holds out the prospect of providing clinically useful biomarkers or biomarker signatures being predictive for reaction phenotypes

    Homologous tropomyosins from vertebrate and invertebrate: Recombinant calibrator proteins in functional biological assays for tropomyosin allergenicity assessment of novel animal foods

    No full text
    BACKGROUND: Novel foods may provide new protein sources for a growing world population but entail risks of unexpected food-allergic reactions. No guidance on allergenicity assessment of novel foods exists, while for genetically modified (GM) crops it includes comparison of sequence identity with known allergens, digestibility tests and IgE serum screening. OBJECTIVE: As a proof of concept, to evaluate non-/allergenic tropomyosins (TMs) regarding their potential as new calibrator proteins in functional biological in vitro assays for the semi-quantitative allergy risk assessment of novel TM-containing animal foods with mealworm TM as an example. METHODS: Purified TMs (shrimp, Penaeus monodon; chicken Gallus gallus; E coli overexpression) were compared by protein sequencing, circular dichroism analysis and in vitro digestion. IgE binding was quantified using shrimp-allergic patients' sera (ELISA). Biological activities were investigated (skin testing; titrated basophil activation tests, BAT), compared to titrated biological mediator release using humanized rat basophil leukaemia (RBL) cells. RESULTS: Shrimp and chicken TMs showed high sequence homology, both alpha-helical structures and thermal stability. Shrimp TM was stable during in vitro gastric digestion, chicken TM degraded quickly. Both TMs bound specific IgE from shrimp-allergic patients (significantly higher for shrimp TM), whereas skin reactivity was mostly positive with only shrimp TM. BAT and RBL cell assays were positive with shrimp and chicken TM, although at up to 100- to 1000-times lower allergen concentrations for shrimp than chicken TM. In RBL cell assays using both TM as calibrators, an activation of effector cells by mealworm TM similar to that by shrimp TM confirmed the already reported high allergenic potency of mealworm TM as a novel protein source. CONCLUSIONS & CLINICAL RELEVANCE: According to current GM crops' allergenicity assessment, non-allergenic chicken TM could falsely be considered an allergen on a weight-of-evidence approach. However, calibrating allergenic potency in functional BAT and RBL cell assays with clinically validated TMs allowed for semi-quantitative discrimination of novel food protein's allergenicity. With TM calibration as a proof of concept, similar systems of homologous protein might be developed to scale on an axis of allergenicity

    Homologous tropomyosins from vertebrate and invertebrate: Recombinant calibrator proteins in functional biological assays for tropomyosin allergenicity assessment of novel animal foods

    No full text
    BACKGROUND: Novel foods may provide new protein sources for a growing world population but entail risks of unexpected food-allergic reactions. No guidance on allergenicity assessment of novel foods exists, while for genetically modified (GM) crops it includes comparison of sequence identity with known allergens, digestibility tests and IgE serum screening. OBJECTIVE: As a proof of concept, to evaluate non-/allergenic tropomyosins (TMs) regarding their potential as new calibrator proteins in functional biological in vitro assays for the semi-quantitative allergy risk assessment of novel TM-containing animal foods with mealworm TM as an example. METHODS: Purified TMs (shrimp, Penaeus monodon; chicken Gallus gallus; E coli overexpression) were compared by protein sequencing, circular dichroism analysis and in vitro digestion. IgE binding was quantified using shrimp-allergic patients' sera (ELISA). Biological activities were investigated (skin testing; titrated basophil activation tests, BAT), compared to titrated biological mediator release using humanized rat basophil leukaemia (RBL) cells. RESULTS: Shrimp and chicken TMs showed high sequence homology, both alpha-helical structures and thermal stability. Shrimp TM was stable during in vitro gastric digestion, chicken TM degraded quickly. Both TMs bound specific IgE from shrimp-allergic patients (significantly higher for shrimp TM), whereas skin reactivity was mostly positive with only shrimp TM. BAT and RBL cell assays were positive with shrimp and chicken TM, although at up to 100- to 1000-times lower allergen concentrations for shrimp than chicken TM. In RBL cell assays using both TM as calibrators, an activation of effector cells by mealworm TM similar to that by shrimp TM confirmed the already reported high allergenic potency of mealworm TM as a novel protein source. CONCLUSIONS & CLINICAL RELEVANCE: According to current GM crops' allergenicity assessment, non-allergenic chicken TM could falsely be considered an allergen on a weight-of-evidence approach. However, calibrating allergenic potency in functional BAT and RBL cell assays with clinically validated TMs allowed for semi-quantitative discrimination of novel food protein's allergenicity. With TM calibration as a proof of concept, similar systems of homologous protein might be developed to scale on an axis of allergenicity

    Are physicochemical properties shaping the allergenic potency of plant allergens?

    No full text
    This review searched for published evidence that could explain how different physicochemical properties impact on the allergenicity of food proteins and if their effects would follow specific patterns among distinct protein families. Owing to the amount and complexity of the collected information, this literature overview was divided in two articles, the current one dedicated to protein families of plant allergens and a second one focused on animal allergens. Our extensive analysis of the available literature revealed that physicochemical characteristics had consistent effects on protein allergenicity for allergens belonging to the same protein family. For example, protein aggregation contributes to increased allergenicity of 2S albumins, while for legumins and cereal prolamins, the same phenomenon leads to a reduction. Molecular stability, related to structural resistance to heat and proteolysis, was identified as the most common feature promoting plant protein allergenicity, although it fails to explain the potency of some unstable allergens (e.g. pollen-related food allergens). Furthermore, data on physicochemical characteristics translating into clinical effects are limited, mainly because most studies are focused on in vitro IgE binding. Clinical data assessing how these parameters affect the development and clinical manifestation of allergies is minimal, with only few reports evaluating the sensitising capacity of modified proteins (addressing different physicochemical properties) in murine allergy models. In vivo testing of modified pure proteins by SPT or DBPCFC is scarce. At this stage, a systematic approach to link the physicochemical properties with clinical plant allergenicity in real-life scenarios is still missing.European Cooperation in Science and Technology (COST) OfficeCOSTEuropean Cooperation in Science and Technology (COST) [FA1402]Fundacao para a Ciencia e TecnologiaPortuguese Foundation for Science and TechnologyEuropean Commission [UIDB 50006/2020]projects AlleRiskAssess [PTDC/BAA-AGR/31720/2017, NORTE-01-0145-FEDER-00001]FCT - POPH-QREN [PD/BD/114576/2016]Ministry of Education, Science and Technological Development of the Republic of Serbia [OI172024]FCTPortuguese Foundation for Science and TechnologyEuropean Commission [UIDB/04326/2020, 16-02-01-FMP0014]Fonds National de la Recherche (FNR)Luxembourg National Research Fund [PRIDE/11012546/NEXTIMMUNE]Personalised Medicine Consortium (PMC), Luxembourg [PMC/2017/02]info:eu-repo/semantics/publishedVersio

    Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens?

    No full text
    Key determinants for the development of an allergic response to an otherwise ‘harmless’ food protein involve different factors like the predisposition of the individual, the timing, the dose, the route of exposure, the intrinsic properties of the allergen, the food matrix (e.g. lipids) and the allergen modification by food processing. Various physicochemical parameters can have an impact on the allergenicity of animal proteins. Following our previous review on how physicochemical parameters shape plant protein allergenicity, the same analysis was proceeded here for animal allergens

    Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens?

    Get PDF
    Key determinants for the development of an allergic response to an otherwise 'harmless' food protein involve different factors like the predisposition of the individual, the timing, the dose, the route of exposure, the intrinsic properties of the allergen, the food matrix (e.g. lipids) and the allergen modification by food processing. Various physicochemical parameters can have an impact on the allergenicity of animal proteins. Following our previous review on how physicochemical parameters shape plant protein allergenicity, the same analysis was proceeded here for animal allergens. We found that each parameter can have variable effects, ranging on an axis from allergenicity enhancement to resolution, depending on its nature and the allergen. While glycosylation and phosphorylation are common, both are not universal traits of animal allergens. High molecular structures can favour allergenicity, but structural loss and uncovering hidden epitopes can also have a similar impact. We discovered that there are important knowledge gaps in regard to physicochemical parameters shaping protein allergenicity both from animal and plant origin, mainly because the comparability of the data is poor. Future biomolecular studies of exhaustive, standardised design together with strong validation part in the clinical context, together with data integration model systems will be needed to unravel causal relationships between physicochemical properties and the basis of protein allergenicity.COST Office; COST (European Cooperation in Science and Technology)European Cooperation in Science and Technology (COST) [FA1402]; Fundacao para a Ciencia e TecnologiaPortuguese Foundation for Science and TechnologyEuropean Commission [UIDB 50006/2020]; POPH-QREN (FSE) [PD/BD/114576/2016]; FCTPortuguese Foundation for Science and TechnologyEuropean Commission [SFRH/BPD/102404/2014, UIDB/04326/2020]; Ministry of Education, Science and Technological Development of the Republic of Serbia [OI172024]; PRIDE program [PRIDE/11012546/NEXTIMMUNE]; FNR (Fonds National de la Recherche)Luxembourg National Research Fund; PMC (Personalised Medicine Consortium); ALLYFISH [Mar2020 16-02-01-FMP0014]; POPH-QREN (MCTES) [PD/BD/114576/2016]; [AlleRiskAssessPTDC/BAA-AGR/31720/2017
    corecore