26 research outputs found

    Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method

    Get PDF
    Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV–visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30–40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90–3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles

    Dependence of defect concentration, optical and photocatalytic properties of β-Ni(OH)2/ZnO and NiO/ZnO composite powders on phase transformation

    No full text
    β-Ni(OH)2/ZnO composite powders were successfully synthesized by hydrothermal method at 180 °C for 15 h whereas NiO/ZnO composite powders formed after the as-prepared powders were calcined at 800 °C for 1 h in air. The X-ray diffractometer (XRD), scanning electron microscope (SEM), UV-Vis spectrophotometer were used to characterize the phase, particle shape as well as size and optical properties, respectively. In this system, it was found that ZnO is a major phase while β-Ni(OH)2 and NiO are a minor phases. The altered particle shape of ZnO was influenced by addition of Ni(CH3COO)2·6H2O whereas the particle shape of the minor phase was changed due to the calcination process. The optical band gap decreased when the amount of minor phase increased. For photocatalytic study, it was found that 6 mol% β-Ni(OH)2/ZnO composite powders exhibited the best decolorization of methylene blue aqueous solution
    corecore