319 research outputs found
Att skapa en mix-template (mixningsmall) : en processbeskrivning av att skapa en mix-template som används för musikproduktion
Syftet med denna forskning är att utöka mitt eget kunnande kring skapandet av en mix-template. Detta gör jag genom att skapa min version av en mix-template i inspelningsprogrammet Cubase samt pröva resultatet i praktiken. Målet är att ha en mix-template som gör mixningsjobbet lättare och snabbare att utföra. Denna process har lett till att jag har utvecklats som mixare samt att mitt arbetssätt har förbättrats. Jag hoppas med detta arbete hjälpa andra som är intresserade av att skapa en mix-template samt klargöra processen i fråga. Frågeställningar till detta projekt är:
• Hur skapar man en mix-template?
• Hur använder man en mix-template i praktiken?The goal with this study is to increase my knowledge around making my own mix-template. I do this by creating my version of a mix-template in the recording software Cubase and by evaluating the results in practice. The goal is to have a mix-template that makes mixing easier and quicker to execute. This process has resulted in me developing further as a mixer and my workflow has improved. I hope this study will help others who are interested in creating a mix-template and to clarify the process behind this. Questions I am asking are:
• How do you create a mix-template?
• How do you use a mix-template in practice
Recommended from our members
Proteiniphilum saccharofermentans str. M3/6T isolated from a laboratory biogas reactor is versatile in polysaccharide and oligopeptide utilization as deduced from genome-based metabolic reconstructions
Proteiniphilum saccharofermentans str. M3/6T is a recently described species within the family Porphyromonadaceae (phylum Bacteroidetes), which was isolated from a mesophilic laboratory-scale biogas reactor. The genome of the strain was completely sequenced and manually annotated to reconstruct its metabolic potential regarding biomass degradation and fermentation pathways. The P. saccharofermentans str. M3/6T genome consists of a 4,414,963 bp chromosome featuring an average GC-content of 43.63%. Genome analyses revealed that the strain possesses 3396 protein-coding sequences. Among them are 158 genes assigned to the carbohydrate-active-enzyme families as defined by the CAZy database, including 116 genes encoding glycosyl hydrolases (GHs) involved in pectin, arabinogalactan, hemicellulose (arabinan, xylan, mannan, β-glucans), starch, fructan and chitin degradation. The strain also features several transporter genes, some of which are located in polysaccharide utilization loci (PUL). PUL gene products are involved in glycan binding, transport and utilization at the cell surface. In the genome of strain M3/6T, 64 PUL are present and most of them in association with genes encoding carbohydrate-active enzymes. Accordingly, the strain was predicted to metabolize several sugars yielding carbon dioxide, hydrogen, acetate, formate, propionate and isovalerate as end-products of the fermentation process. Moreover, P. saccharofermentans str. M3/6T encodes extracellular and intracellular proteases and transporters predicted to be involved in protein and oligopeptide degradation. Comparative analyses between P. saccharofermentans str. M3/6T and its closest described relative P. acetatigenes str. DSM 18083T indicate that both strains share a similar metabolism regarding decomposition of complex carbohydrates and fermentation of sugars. © 2018 The Author
Climate feedback efficiency and synergy
The Author(s) 2013. This article is published with open access at Springerlink.com Abstract Earth’s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is deter-mined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically control-ling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contri-butions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface tempera-ture change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies sur-round the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere
Isolating aerosol-climate interactions in global kilometre-scale simulations
Anthropogenic aerosols are a primary source of uncertainty in future climate projections. Changes to aerosol concentrations modify cloud radiative properties, radiative fluxes and precipitation from the micro to the global scale. Due to computational constraints, we have been unable to explicitly simulate cloud dynamics, leaving key processes, such as convective updrafts parameterized. This has significantly limited our understanding of aerosol impacts on convective clouds and climate. However, new state-of-the-art climate models running on exascale supercomputers are capable of representing these scales. In this study, we use the kilometre-scale earth system model ICON to explore, for the first time, the global response of clouds and precipitation to anthropogenic aerosol via aerosol-cloud-interactions (ACI) and aerosol-radiation-interactions (ARI). In our month-long simulations, we find that the aerosol impact on clouds and precipitation exhibits strong regional dependence, highlighting the complex interplay with atmospheric dynamics. The impact of ARI and ACI on clouds in isolation shows some consistent behaviour, but the magnitude and additive nature of the effects are regionally dependent. This behaviour suggests that the findings of isolated case studies from regional simulations may not be representative, and that ARI and ACI processes should both be accounted for in modelling studies. The simulations also highlight some limitations to be considered in future studies. Differences in internal variability between the simulations makes large-scale comparison difficult after the initial 10 – 15 days. Longer averaging periods or ensemble simulations will be beneficial for perturbation experiments in future kilometre-scale model simulations
Assessing deficit irrigation strategies for corn using simulation
Citation: Kisekka, I., Aguilar, J. P., Rogers, D. H., Holman, J., O'Brien, D. M., & Klocke, N. (2016). Assessing deficit irrigation strategies for corn using simulation. Transactions of the Asabe, 59(1), 303-317. doi:10.13031/trans.59.11206Declining groundwater levels in the Ogallala aquifer due to withdrawals exceeding annual recharge result in diminished well capacities that eventually become incapable of meeting full crop water needs. Producers need recommendations for deficit irrigation strategies that can maximize net returns in most years under low well capacities. The objectives of this study were to (1) calibrate and validate the CERES-Maize model in DSSAT-CSM v4.6 under southwest Kansas soils and climatic conditions and (2) apply the calibrated model to assess three factors related to irrigation management: (i) the optimum plant-available water threshold to initiate irrigation for maximizing net returns, (ii) the effect of percentage soil water depletion at planting on yield, seasonal transpiration, water productivity, extractable soil water at maturity, and net returns, and (iii) the effect of late irrigation season termination on extractable soil water at physiological maturity, yield, and net returns. The CERES-Maize model in DSSAT-CSM v4.6 in conjunction with short-term experimental data and 63 years (1950 to 2013) of historical weather data were used in this study. The calibrated model was able to predict end of season grain yield with acceptable accuracy (NSE > 0.9, 0.13 < %RMSE < 0.19), indicating that the model could be used for assessing alternative management strategies for optimizing the use of limited water for irrigating corn in southwest Kansas. Irrigation scheduling based on a 50% plant-available water threshold maximized net returns compared to initiating irrigation at greater soil water content at corn prices ranging from 0.26 kg-1. Accounting for inter-annual variations in weather and irrigation downtime due to repairs, 14 to 17 irrigation applications of 25 mm of water each would be needed to maintain soil water at 50% of plant-available water during the season. Having soil water in the top 1.2 m of the soil profile between 0% and 25% depleted at planting maximized net returns, although it also resulted in more extractable soil water at physiological maturity. Terminating irrigation 90 or 95 days after planting depending on corn price maximized net returns and resulted in the lowest amount of extractable soil water at physiological maturity, implying that opportunities exist to mine stored soil water toward the end of the season even under deficit irrigation. We recommend that late season irrigation termination be done in conjunction with soil water monitoring and management- allowable depletion techniques to minimize potential reduction in yields. Before adopting any of the management strategies assessed in this study, producers should consider the unique yield potential constraints for their farm. The concepts explored in this analysis, which combined experimental data, computer simulation, and long-term weather data to generate optimum management recommendations, could be applied in other areas with constrained water supplies for irrigation. © 2016 American Society of Agricultural and Biological Engineers
Finding correlations between tool life and fundamental dry cutting tests in finishing turning of steel
Tool life is usually measured by end tool life tests, however, such experiments are costly and time consuming. Establishing correlation between these tests and shorter and cheaper tests is consequently of great interest. Experimental results from dry orthogonal cutting tests are reported and a good correlation between temperature reached at the tool and tool life test is shown
- …