111 research outputs found

    The pedunculopontine tegmental nucleus and the nucleus basalis magnocellularis: Do both have a role in sustained attention?

    Get PDF
    It is well established that nucleus basalis magnocellularis (NbM) lesions impair performance on tests of sustained attention. Previous work from this laboratory has also demonstrated that pedunculopontine tegmental nucleus (PPTg) lesioned rats make more omissions on a test of sustained attention, suggesting that it might also play a role in mediating this function. However, the results of the PPTg study were open to alternative interpretation. We aimed to resolve this by conducting a detailed analysis of the effects of damage to each brain region in the same sustained attention task used in our previous work. Rats were trained in the task before surgery and post-surgical testing examined performance in response to unpredictable light signals of 1500 ms and 4000 ms duration. Data for PPTg lesioned rats were compared to control rats, and rats with 192 IgG saporin infusions centred on the NbM. In addition to operant data, video data of rats' performance during the task were also analysed

    Repeated administration of the GABAB receptor positive modulator BHF177 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine seeking in rats

    Get PDF
    Abstract: Rationale γ\gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the modulation of central reward processes. Acute or chronic administration of GABAB_B receptor agonists or positive modulators decreased self-administration of various drugs of abuse. Furthermore, GABAB_B receptor agonists inhibited cue-induced reinstatement of nicotine- and cocaine-seeking behavior. Because of their fewer adverse side effects compared with GABAB_B receptor agonists, GABAB_B receptor positive modulators are potentially improved therapeutic compounds for the treatment of drug dependence compared with agonists. Objectives and methods: We examined whether the acute effects of the GABAB_B receptor positive modulator N-[(1R,2R,4S)-bicyclo[2.2.1]hept-2-yl]-2-methyl-5-[4-(trifluoromethyl)phenyl]-4-pyrimidinamine (BHF177) on nicotine self- administration and food-maintained responding under a fixed-ratio 5 schedule of reinforcement were maintained after repeated administration. The effects of acute BHF177 administration on cue-induced nicotine- and food-seeking behavior, a putative animal model of relapse, were also examined. Results: Repeated administration of BHF177 for 14 days decreased nicotine self-administration, with small tolerance observed during the last 7 days of treatment, whereas BHF177 minimally affected food-maintained responding. Acute BHF177 administration dose-dependently blocked cue-induced reinstatement of nicotine-, but not food-, seeking behavior after a 10-day extinction period. Conclusions: These results showed that BHF177 selectively blocked nicotine self-administration and prevented cueinduced reinstatement of nicotine seeking, with minimal effects on responding for food and no effect on cue-induced reinstatement of food seeking. Thus, GABAB_B receptor positive modulators could be useful therapeutics for the treatment of different aspects of nicotine dependence by facilitating smoking cessation by decreasing nicotine intake and preventing relapse to smoking in humans

    Regulation of Somatodendritic Dopamine Release in the Ventral Tegmental Area By Opioids and Gaba - An Invivo Microdialysis Study

    No full text
    Microdialysis of the ventral tegmental area in conscious rats was used to evaluate the influence of opioids and GABA agonists on extracellular levels of GABA and somatodendritically released dopamine. The administration of morphine through the dialysis probe elicited significant, dose-dependent increases in the levels of extracellular dopamine and significantly reduced the extracellular concentration of GABA. In contrast, a dose-dependent decrease in somatodendritic extracellular dopamine was produced following the administration of the GABA(B) agonist baclofen. The increase in dopamine levels elicited by morphine (100-mu-M) was completely blocked by either baclofen (100-mu-M) coadministration or peripheral injection of naloxone (2 mg/kg, i.p.). Application of the GABA(A) agonist muscimol produced a significant increase in both extracellular levels of dopamine and locomotor activity. The present results, together with other electrophysiological, neurochemical, and behavioral data, support a hypothesis that stimulation of mu-opioid or GABA(A) receptors inhibits the activity of GABAergic afferents to dopamine neurons, thereby removing tonic inhibitory regulation, whereas stimulation of GABA(B) receptors directly inhibits dopamine neurons
    • …
    corecore