51 research outputs found
Imaging studies of comets
The Joint Observatory for Cometary Research's (JOCR) historical mission has been to provide understanding of large-scale interactions between bright comets and solar wind using wide-angle (Schmidt) imagery and spacecraft data; in this pursuit the JOCR has excelled. The 16 inch Newtonian/Cassegrain telescope was upgraded to permit filtered, narrow-field charge coupled device (CCD) imaging of both bright and faint comets. Thus, the goal of obtaining narrow-band imagery of the near-nuclear region of bright comets was added to JOCR's original mission with emphasis on ionization processes and total gas production. A 300 mm lens/CCD system exists with 3 degree field of view (FOV) which uses comet filters; this system bridges the gap between the wide-field (8 x 10 deg) Schmidt plates and the several-arcmin. field of the 16 inch telescope. JOCR is located under dark skies on South Baldy Mountain (el. 10,600 ft.) near Socorro, NM, and is one of the last truly dark sites in the continental U.S
Time-lapse CCD imagery of plasma-tail motions in Comet Austin
The appearance of the bright comet Austin 1989c1 in April-May of 1990 allowed us to test a new imaging instrument at the Joint Observatory for Cometary Research (JOCR). It is a 300mm lens/charge coupled device (CCD) system with interference filters appropriate for cometary emissions. The 13 frames were made into a time-lapse movie showing the evolution of the plasma tail. We were able to follow at least two large-scale waves out through the main tail structure. During the sequence, we saw two new tail rays form and undergo similar wave motion
Hydrogen line blanketed model stellar atmospheres
Hydrogen line blanketed stellar model atmosphere
Decoding of the light changes in eclipsing Wolf-Rayet binaries I. A non-classical approach to the solution of light curves
We present a technique to determine the orbital and physical parameters of
eclipsing eccentric Wolf-Rayet + O-star binaries, where one eclipse is produced
by the absorption of the O-star light by the stellar wind of the W-R star. Our
method is based on the use of the empirical moments of the light curve that are
integral transforms evaluated from the observed light curves. The optical depth
along the line of sight and the limb darkening of the W-R star are modelled by
simple mathematical functions, and we derive analytical expressions for the
moments of the light curve as a function of the orbital parameters and the key
parameters of the transparency and limb-darkening functions. These analytical
expressions are then inverted in order to derive the values of the orbital
inclination, the stellar radii, the fractional luminosities, and the parameters
of the wind transparency and limb-darkening laws. The method is applied to the
SMC W-R eclipsing binary HD 5980, a remarkable object that underwent an
LBV-like event in August 1994. The analysis refers to the pre-outburst
observational data. A synthetic light curve based on the elements derived for
the system allows a quality assessment of the results obtained.Comment: Accepted for publication in Astronomy & Astrophysic
The digital archive of the International Halley Watch
The International Halley Watch was established to coordinate, collect, archive, and distribute the scientific data from Comet P/Halley that would be obtained from both the ground and space. This paper describes one of the end products of that effort, namely the IHW Digital Archive. The IHW Digital Archive consists of 26 CD-ROM's containing over 32 gigabytes of data from the 9 IHW disciplines as well as data from the 5 spacecraft missions flown to comet P/Haley and P/Giacobini-Zinner. The total archive contains over 50,000 observations by 1,500 observers from at least 40 countries. The first 24 CD's, which are currently available, contain data from the 9 IHW disciplines. The two remaining CD's will have the spacecraft data and should be available within the next year. A test CD-ROM of these data has been created and is currently under review
8077 HOYLE: A SHORT PERIOD ASTEROID
The main-belt asteroid 8077 Hoyle was observed on 13 nights over a span of 47 days in 2012 April-May. A bimodal synodic period of 2.7454 ± 0.0002 h and an amplitude of 0.20 ± 0.02 mag. were obtained
Reanalysis of two eclipsing binaries: EE Aqr and Z Vul
We study the radial-velocity and light curves of the two eclipsing binaries
EE Aqr and Z Vul. Using the latest version of the Wilson & Van Hamme (2003)
model, absolute parameters for the systems are determined. We find that EE Aqr
and Z Vul are near-contact and semi-detached systems, respectively. The primary
component of EE Aqr fills about 96% of its 'Roche lobe', while its secondary
one appears close to completely filling this limiting volume. In a similar way,
we find fill-out proportions of about 72 and 100% of these volumes for the
primary and secondary components of Z Vul respectively. We compare our results
with those of previous authors.Comment: 13 pages, 8 figures, 10 table
A Giant Crater on 90 Antiope?
Mutual event observations between the two components of 90 Antiope were
carried out in 2007-2008. The pole position was refined to lambda0 =
199.5+/-0.5 eg and beta0 = 39.8+/-5 deg in J2000 ecliptic coordinates, leaving
intact the physical solution for the components, assimilated to two perfect
Roche ellipsoids, and derived after the 2005 mutual event season (Descamps et
al., 2007). Furthermore, a large-scale geological depression, located on one of
the components, was introduced to better match the observed lightcurves. This
vast geological feature of about 68 km in diameter, which could be postulated
as a bowl-shaped impact crater, is indeed responsible of the photometric
asymmetries seen on the "shoulders" of the lightcurves. The bulk density was
then recomputed to 1.28+/-0.04 gcm-3 to take into account this large-scale
non-convexity. This giant crater could be the aftermath of a tremendous
collision of a 100-km sized proto-Antiope with another Themis family member.
This statement is supported by the fact that Antiope is sufficiently porous
(~50%) to survive such an impact without being wholly destroyed. This violent
shock would have then imparted enough angular momentum for fissioning of
proto-Antiope into two equisized bodies. We calculated that the impactor must
have a diameter greater than ~17 km, for an impact velocity ranging between 1
and 4 km/s. With such a projectile, this event has a substantial 50%
probability to have occurred over the age of the Themis family.Comment: 30 pages, 3 Tables, 8 Figures. Accepted for publication in Icaru
The 0.4-Mo Eclipsing Binary CU Cancri: Absolute Dimensions, Comparison with Evolutionary Models and Possible Evidence for a Circumstellar Dust Disk
Photometric observations in the R and I bands of the detached M-type
double-lined eclipsing binary CU Cnc have been acquired and analysed. The
photometric elements obtained from the analysis of the light curves have been
combined with an existing spectroscopic solution to yield high-precision
(errors<2%) absolute dimensions: M_A=0.4333+/-0.0017 Mo, M_B=0.3980+/-0.0014
Mo, R_A=0.4317+/-0.0052 Ro, and R_B=0.3908+/-0.0094 Ro. The mean effective
temperature of the system has been estimated to be Teff=3140+/-150 K by
comparing multi-band photometry with synthetic colors computed from model
atmospheres. Additionally, we have been able to obtain an estimate for the age
(~320 Myr) and chemical composition ([Fe/H]~0.0) of the binary system through
its membership of the Castor moving group. With all these observational
constraints, we have carried out a critical test of recent stellar models for
low-mass stars. The comparison reveals that most evolutionary models
underestimate the radius of the stars by as much as 10%, thus confirming the
trend observed by Torres & Ribas (2002) for YY Gem and V818 Tau. In the
mass-absolute magnitude diagram, CU Cnc is observed to be dimmer than other
stars of the same mass. After ruling out a number of different scenarios, the
apparent faintness of CU Cnc can be explained if its components are some 10%
cooler than similar-mass stars or if there is some source of circumstellar dust
absorption. The latter could be a tantalizing indirect evidence for a coplanar
(Vega-like) dusty disk around this relatively young M-type binary.Comment: 14 pages, 5 figures, 6 tables. Accepted for publication in A&A.
Tables 1 and 2 available in electronic form at the CDS after publicatio
- …