15 research outputs found

    Common aquarium antiseptics do not cause long-term shifts in coral microbiota but may impact coral growth rates

    Get PDF
    IntroductionThough bacterial pathogens and parasites can compromise coral health, coral microbiome research increasingly suggests a beneficial role for bacterial species living in coral tissue and mucus. Recent studies suggest the application of targeted antibiotic treatments, while inhibiting the growth of harmful bacteria, may have unintended and persistent impacts on coral health. Land-based coral nurseries use antiseptic treatments such as Lugol’s solution and KoralMD™ dip to reduce infectious agents as part of restoration best practices. These antiseptic treatments often halt tissue loss, but the short- or long-term effects of these treatments on the coral microbiome is unknown.MethodsWe conducted a controlled tank experiment to assess the effects of these broad-spectrum treatments on coral growth rates and microbial communities when used as a prophylactic measure on healthy corals. Sixty individuals from each of two genotypes of the coral species Acropora palmata and Orbicella faveolata were treated with either Lugol’s solution or KoralMD™. Coral tissue, mucus, and skeleton were sampled pre-treatment, during treatment, and 1 and 2 months after treatment to assess microbiome shifts and recovery. The impact of the two treatments on coral growth was assessed using surface area measurements from 3D imagery.ResultsAlthough we found that A. palmata treated with Lugol’s solution had significantly reduced growth rates compared with untreated controls, impacts of antiseptic treatment were otherwise limited and microbiomes were not significantly different by treatment either immediately after application or 2 months thereafter. DiscussionStudy of the effects of these widely-used interventions may have significant repercussions on management and propagation strategies for corals reared in land-based nurseries. Furthermore, our findings indicate that antiseptic treatments can be applied to mitigate coral health issues without long-term harmful effects or significant microbiome shifts

    Phylogenetic, genomic, and biogeographic characterization of anovel and ubiquitous marine invertebrate-associated Rickettsiales parasite,Candidatus Aquarickettsia rohweri, gen. nov., sp. nov

    Get PDF
    Bacterial symbionts are integral to the health and homeostasis of invertebrate hosts. Notably, members of the Rickettsiales genus Wolbachia influence several aspects of the fitness and evolution of their terrestrial hosts, but few analogous partnerships have been found in marine systems. We report here the genome, phylogenetics, and biogeography of a ubiquitous and novel Rickettsiales species that primarily associates with marine organisms. We previously showed that this bacterium was found in scleractinian corals, responds to nutrient exposure, and is associated with reduced host growth and increased mortality. This bacterium, like other Rickettsiales, has a reduced genome indicative of a parasitic lifestyle. Phylogenetic analysis places this Rickettsiales within a new genus we define as “Candidatus Aquarickettsia.” Using data from the Earth Microbiome Project and SRA databases, we also demonstrate that members of “Ca. Aquarickettsia” are found globally in dozens of invertebrate lineages. The coral-associated “Candidatus A. rohweri” is the first finished genome in this new clade. “Ca. A. rohweri” lacks genes to synthesize most sugars and amino acids but possesses several genes linked to pathogenicity including Tlc, an antiporter that exchanges host ATP for ADP, and a complete Type IV secretion system. Despite its inability to metabolize nitrogen, “Ca. A. rohweri” possesses the NtrY-NtrX two-component system involved in sensing and responding to extracellular nitrogen. Given these data, along with visualization of the parasite in host tissues, we hypothesize that “Ca. A. rohweri” reduces coral health by consuming host nutrients and energy, thus weakening and eventually killing host cells. Last, we hypothesize that nutrient enrichment, which is increasingly common on coral reefs, encourages unrestricted growth of “Ca. A. rohweri” in its host by providing abundant N-rich metabolites to be scavenged

    Wastewater Disposal from Unconventional Oil and Gas Development Degrades Stream Quality at a West Virginia Injection Facility

    No full text
    The development of unconventional oil and gas (UOG) resources has rapidly increased in recent years; however, the environmental impacts and risks are poorly understood. A single well can generate millions of liters of wastewater, representing a mixture of formation brine and injected hydraulic fracturing fluids. One of the most common methods for wastewater disposal is underground injection; we are assessing potential risks of this method through an intensive, interdisciplinary study at an injection disposal facility in West Virginia. In June 2014, waters collected downstream from the site had elevated specific conductance (416 μS/cm) and Na, Cl, Ba, Br, Sr, and Li concentrations, compared to upstream, background waters (conductivity, 74 μS/cm). Elevated TDS, a marker of UOG wastewater, provided an early indication of impacts in the stream. Wastewater inputs are also evident by changes in <sup>87</sup>Sr/<sup>86</sup>Sr in streamwater adjacent to the disposal facility. Sediments downstream from the facility were enriched in Ra and had high bioavailable Fe­(III) concentrations relative to upstream sediments. Microbial communities in downstream sediments had lower diversity and shifts in composition. Although the hydrologic pathways were not able to be assessed, these data provide evidence demonstrating that activities at the disposal facility are impacting a nearby stream and altering the biogeochemistry of nearby ecosystems

    Correction: Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov (The ISME Journal, (2019), 13, 12, (2938-2953), 10.1038/s41396-019-0482-0)

    No full text
    Since publication of the original article the authors noticed that an incorrect file was uploaded instead of the Supplementary Tables. The incorrect file has been replaced with the Supplementary Tables file. Furthermore the abstract has been edited slightly in both HTML and PDF versions for clarity
    corecore