57 research outputs found

    Maternal serum steroid levels are unrelated to fetal sex: a study in twin pregnancies

    Get PDF
    Increased prenatal exposure to testosterone (T) in females of an opposite-sex (OS) twin pair may have an effect on the development of sex-typical cognitive and behavioral patterns. The prenatal exposure to T due to hormone transfer in OS twin females may occur in two ways, one directly via the feto–fetal transfer route within the uterus, the other indirectly through maternal–fetal transfer and based in the maternal–fetal compartment. Although some studies in singletons indeed found that women pregnant with a male fetus have higher T levels during gestation than women pregnant with a female fetus, many other studies could not find any relation between the sex of the fetus and maternal serum steroid levels. Therefore at present it is unclear whether a pregnant woman bearing a male has higher levels of T than a woman bearing a female. Up to this point, no-one has investigated this issue in twin pregnancies. We examined the relationship between maternal serum steroid levels and sex of fetus in 17 female–female, 9 male–male and 29 OS twin pregnancies. No differences were observed between the maternal serum steroid levels of women expecting single-sex and mixed-sex offspring. It is concluded that the source of prenatal T exposure in females probably comes from the fetal unit, which is the direct route of fetal hormone transfer

    Monitoring of species' genetic diversity in Europe varies greatly and overlooks potential climate change impacts.

    Get PDF
    Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species' joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union's Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity

    The era of reference genomes in conservation genomics

    Get PDF

    The era of reference genomes in conservation genomics

    Get PDF
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics

    Probabilistic examination of the change in eigenfrequencies of an offshore wind turbine under progressive scour incorporating soil spatial variability

    Get PDF
    The trend for development in the offshore wind sector is towards larger turbines in deeper water. This results in higher wind and wave loads on these dynamically sensitive structures. Monopiles are the preferred foundation solution for offshore wind structures and have a typical expected design life of 20 years. These foundations have strict serviceability tolerances (e.g. mudline rotation of less than 0.25° during operation). Accurate determination of the system frequency is critical in order to ensure satisfactory performance over the design life, yet determination of the system stiffness and in particular the operational soil stiffness remains a significant challenge. Offshore site investigations typically focus on the determination of the soil conditions using Cone Penetration Test (CPT) data. This test gives large volumes of high quality data on the soil conditions at the test location, which can be correlated to soil strength and stiffness parameters and used directly in pile capacity models. However, a combination of factors including; parameter transformation, natural variability, the relatively small volume of the overall sea bed tested and operational effects such as the potential for scour development during turbine operation lead to large uncertainties in the soil stiffness values used in design. In this paper, the effects of scour erosion around unprotected foundations on the design system frequencies of an offshore wind turbine is investigated numerically. To account for the uncertainty in soil-structure interaction stiffness for a given offshore site, a stochastic ground model is developed using the data resulting from CPTs as inputs. Results indicate that the greater the depth of scour, the less certain a frequency-based SHM technique would be in accurately assessing scour magnitude based solely on first natural frequency measurements. However, using Receiver Operating Characteristic (ROC) curve analysis, the chance of detecting the presence of scour from the output frequencies is improved significantly and even modest scour depths of 0.25 pile diameters can be detected

    Monitoring of species’ genetic diversity in Europe varies greatly and overlooks potential climate change impacts

    Get PDF
    Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species’ joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union’s Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity
    corecore