49 research outputs found

    Kaonen-Produktion in C+C und Si+Si Kollisionen bei 40A und 158A GeV

    No full text
    In dieser Arbeit wurde die Produktion geladener Kaonen in C+C und Si+Si- Kollisionen bei Strahlenergien von 40A und 158A GeV untersucht, die verwendeten Daten stammen vom CERN Experiment NA49. Die Kaonen wurden über den mittleren Energieverlust in den TPCs identifiziert, was die Messung der Phasenraumverteilung in einem großen Bereich möglich machte. Die Analyse basiert auf der dE/dx Auswertung aller NA49 TPCs (globale Analyse). Es wurde herausgefunden, dass bei den C+C und Si+Si Datensätzen die MTPC dE/dx Information unvollständig auf den DSTs gespeichert wurde. Da die Auflösung bei der Bestimmung des mittleren Energieverlusts beschränkt ist, ist die Teilchenidentifikation nur über statistische Methoden möglich. Im Kapitel 4 wird diese von Marco van Leeuwen mitentwickelte Methode beschrieben. Für die endgültigen Werte der Phasenraumverteilung der Teilchen müssen die identifizierten Kaonen noch auf Effekte korrigiert werden, die durch den Aufbau des Detektors und die verwendete Analysesoftware hervorgerufen werden. Die Korrekturen werden im Kapitel 5.4 beschrieben und angewandt, dies sind unter anderem geometrische Korrekturen, Akzeptanz und Zerfallskorrekturen. Die Ergebnisse bei 158A GeV wurden mit C.Höhnes Ergebnissen verglichen und stimmen im Rahmen der Fehler überein. Zur Übersicht wurden die Daten mit den anderen NA49-Daten zusammengefasst. Dabei ist zu erkennen dass die Verhältnisse / , / , / und / im Bereich zwischen p+p und Si+Si schnell ansteigen und im weiterem Verlauf bis Pb+Pb kaum weiter ansteigen. Im Rahmen des Statistical Model of the Early Stage sind dies Anzeichen für einen Übergang in das Quark-Gluon-Plasma bei 40A GeV in Si+Si Kollisionen. Für eine Bestätigung dieser Vermutung sind jedoch weitere Messungen bei unterschiedlichen Energien und Systemen notwendig

    Energy dependence of transverse mass spectra of kaons produced in p+p and p+pbar interactions.A compilation

    Get PDF
    The data on m_T spectra of K0S K+ and K- mesons produced in all inelastic p+p and p+pbar interactions in the energy range sqrt(s)NN=4.7-1800GeV are compiled and analyzed. The spectra are parameterized by a single exponential function, dN/(m_T*dm_T)=C exp(-m_T/T), and the inverse slope parameter T is the main object of study. The T parameter is found to be similar for K0S, K+ and K- mesons. It increases monotonically with collision energy from T~30MeV at sqrt(s)NN=4.7GeV to T~220MeV at sqrt(s)NN=1800GeV. The T parameter measured in p+p and p+pbar interactions is significantly lower than the corresponding parameter obtained for central Pb+Pb collisions at all studied energies. Also the shape of the energy dependence of TT is different for central Pb+Pb collisions and p+p(pbar) interactions.Comment: more differential analysis adde

    System size and centrality dependence of the balance function in A+A collisions at sqrt[sNN]=17.2 GeV

    Get PDF
    Electric charge correlations were studied for p+p, C+C, Si+Si, and centrality selected Pb+Pb collisions at sqrt[sNN]=17.2 GeV with the NA49 large acceptance detector at the CERN SPS. In particular, long-range pseudorapidity correlations of oppositely charged particles were measured using the balance function method. The width of the balance function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions

    System size and centrality dependence of the balance function in A + A collisions at sqrt s NN = 17.2 GeV

    Get PDF
    Electric charge correlations were studied for p+p, C+C, Si+Si and centrality selected Pb+Pb collisions at sqrt s_NN = 17.2$ GeV with the NA49 large acceptance detector at the CERN-SPS. In particular, long range pseudo-rapidity correlations of oppositely charged particles were measured using the Balance Function method. The width of the Balance Function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions

    Strangeness production at SPS energies

    Get PDF
    We present a summary of measurements of strange particles performed by the experiment NA49 in central and minimum bias Pb+Pb collisions in the beam energy range 20A - 158A GeV. New results on Xi production in central Pb+Pb collisions and on Lambda, Xi production in minimum bias collisions are shown. Transverse mass spectra and rapidity distributions of strange particles at different energies are compared. The energy dependence of the particle yields and ratios is discussed. NA49 measurements of the Lambda and Xi enhancement factors are shown for the first time.Comment: Submitted to J. Phys. G (Proceedings of the 9th International Conference on Strangeness in Quark Matter, Los Angeles, USA, March 26-31, 2006). 9 pages, 9 figure

    Multistrange Hyperon Production in Pb+Pb collisions at 30, 40, 80 and 158 A\cdotGeV

    Full text link
    A non-monotonic energy dependence of the K+/π+K^{+} / \pi^{+} ratio with a sharp maximum close to 30 A\cdotGeV is observed in central Pb+Pb collisions. Within a statistical model of the early stage, this is interpreted as a sign of the phase transition to a QGP, which causes a sharp change in the energy dependence of the strangeness to entropy ratio. This observation naturally motivates us to study the production of multistrange hyperons (Ξ\Xi, Ω\Omega) as a function of the beam energy. Furthermore it was suggested that the kinematic freeze-out of Ω\Omega takes place directly at QGP hadronization. If this is indeed the case, the transverse momentum spectra of the Ω\Omega directly reflect the transverse expansion velocity of a hadronizing QGP. In this report we show preliminary NA49 results on Ω\Omega^{-} and Ωˉ+\bar{\Omega}^{+} production in central Pb+Pb collisions at 40 and 158 A\cdotGeV and compare them to measurements of Ξ\Xi^{-} and Ξˉ+\bar{\Xi}^{+} production in central Pb+Pb collisions at 30, 40, 80 and 158 A\cdotGeV.Comment: Presented at 25th International School of Nuclear Physics, Erice, Italy, to be published in Progress in Particle and Nuclear Physics, 3 pages, 4 figure

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link
    corecore