440 research outputs found

    Model for nucleation in GaAs homoepitaxy derived from first principles

    Full text link
    The initial steps of MBE growth of GaAs on beta 2-reconstructed GaAs(001) are investigated by performing total energy and electronic structure calculations using density functional theory and a repeated slab model of the surface. We study the interaction and clustering of adsorbed Ga atoms and the adsorption of As_2 molecules onto Ga atom clusters adsorbed on the surface. The stable nuclei consist of bound pairs of Ga adatoms, which originate either from dimerization or from an indirect interaction mediated through the substrate reconstruction. As_2 adsorption is found to be strongly exothermic on sites with a square array of four Ga dangling bonds. Comparing two scenarios where the first As_2 gets incorporated in the incomplete surface layer, or alternatively in a new added layer, we find the first scenario to be preferable. In summary, the calculations suggest that nucleation of a new atomic layer is most likely on top of those surface regions where a partial filling of trenches in the surface has occurred before.Comment: 8 pages, 14 figures, Submitted to Phys. Rev. B (December 15, 1998). Other related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Super-critical Accretion Flows around Black Holes: Two-dimensional, Radiation-pressure-dominated Disks with Photon-trapping

    Full text link
    The quasi-steady structure of super-critical accretion flows around a black hole is studied based on the two-dimensional radiation-hydrodynamical (2D-RHD) simulations. The super-critical flow is composed of two parts: the disk region and the outflow regions above and below the disk. Within the disk region the circular motion as well as the patchy density structure are observed, which is caused by Kelvin-Helmholtz instability and probably by convection. The mass-accretion rate decreases inward, roughly in proportion to the radius, and the remaining part of the disk material leaves the disk to form outflow because of strong radiation pressure force. We confirm that photon trapping plays an important role within the disk. Thus, matter can fall onto the black hole at a rate exceeding the Eddington rate. The emission is highly anisotropic and moderately collimated so that the apparent luminosity can exceed the Eddington luminosity by a factor of a few in the face-on view. The mass-accretion rate onto the black hole increases with increase of the absorption opacity (metalicity) of the accreting matter. This implies that the black hole tends to grow up faster in the metal rich regions as in starburst galaxies or star-forming regions.Comment: 16 pages, 12 figures, accepted for publication in ApJ (Volume 628, July 20, 2005 issue

    Novel diffusion mechanism on the GaAs(001) surface: the role of adatom-dimer interaction

    Get PDF
    Employing first principles total energy calculations we have studied the behavior of Ga and Al adatoms on the GaAs(001)-beta2 surface. The adsorption site and two relevant diffusion channels are identified. The channels are characterized by different adatom-surface dimer interaction. Both affect in a novel way the adatom migration: in one channel the diffusing adatom jumps across the surface dimers and leaves the dimer bonds intact, in the other one the surface dimer bonds are broken. The two channels are taken into account to derive effective adatom diffusion barriers. From the diffusion barriers we conclude a strong diffusion anisotropy for both Al and Ga adatoms with the direction of fastest diffusion parallel to the surface dimers. In agreement with experimental observations we find higher diffusion barriers for Al than for Ga.Comment: 4 pages, 2 figures, Phys. Rev. Lett. 79 (1997). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    A Possible New Transiting Planet

    Get PDF
    Recently, 59 low-luminosity object transits were reported from the Optical Gravitational Lensing Experiment (OGLE). Our follow-up low-resolution spectroscopy of 16 candidates provided two objects, OGLE-TR-3 and OGLE-TR-10, which have companions with radii compatible with those of gas-giant planets. Further high-resolution spectroscopy revealed a very low velocity variation (<500m/s) of the host star OGLE-TR-3 which may be caused by its unseen companion. An analysis of the radial velocity and light curve results in M<2.5 M_jup, R<1.6 R_jup, and an orbital separation of about 5 R_sol, which makes it the planet with the shortest period known. This allows to identify the low-luminosity companion of OGLE-TR-3 as a possible new gas-giant planet. If confirmed, this makes OGLE-TR-3 together with OGLE-TR-56 the first extrasolar planets detected via their transit light curves.Comment: 9 pages, 12 figures, A&A in pres

    Effect of strain on surface diffusion in semiconductor heteroepitaxy

    Full text link
    We present a first-principles analysis of the strain renormalization of the cation diffusivity on the GaAs(001) surface. For the example of In/GaAs(001)-c(4x4) it is shown that the binding of In is increased when the substrate lattice is expanded. The diffusion barrier \Delta E(e) has a non-monotonic strain dependence with a maximum at compressive strain values (e 0) studied. We discuss the consequences of spatial variations of both the binding energy and the diffusion barrier of an adatom caused by the strain field around a heteroepitaxial island. For a simplified geometry, we evaluate the speed of growth of two coherently strained islands on the GaAs(001) surface and identify a growth regime where island sizes tend to equalize during growth due to the strain dependence of surface diffusion.Comment: 10 pages, 8 figures, LaTeX2e, to appear in Phys. Rev. B (2001). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Electronic and structural properties of vacancies on and below the GaP(110) surface

    Full text link
    We have performed total-energy density-functional calculations using first-principles pseudopotentials to determine the atomic and electronic structure of neutral surface and subsurface vacancies at the GaP(110) surface. The cation as well as the anion surface vacancy show a pronounced inward relaxation of the three nearest neighbor atoms towards the vacancy while the surface point-group symmetry is maintained. For both types of vacancies we find a singly occupied level at mid gap. Subsurface vacancies below the second layer display essentially the same properties as bulk defects. Our results for vacancies in the second layer show features not observed for either surface or bulk vacancies: Large relaxations occur and both defects are unstable against the formation of antisite vacancy complexes. Simulating scanning tunneling microscope pictures of the different vacancies we find excellent agreement with experimental data for the surface vacancies and predict the signatures of subsurface vacancies.Comment: 10 pages, 6 figures, Submitted to Phys. Rev. B, Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Differential proteomic analysis of abnormal intramyoplasmic aggregates in desminopathy

    Get PDF
    Desminopathy is a subtype of myofibrillar myopathy caused by desmin mutations and characterized by protein aggregates accumulating in muscle fibers. The aim of this study was to assess the protein composition of these aggregates. Aggregates and intact myofiber sections were obtained from skeletal muscle biopsies of five desminopathy patients by laser microdissection and analyzed by a label-free spectral count-based proteomic approach. We identified 397 proteins with 22 showing significantly higher spectral indices in aggregates (ratio >1.8, p <0.05). Fifteen of these proteins not previously reported as specific aggregate components provide new insights regarding pathomechanisms of desminopathy. Results of proteomic analysis were supported by immunolocalization studies and parallel reaction monitoring. Three mutant desmin variants were detected directly on the protein level as components of the aggregates, suggesting their direct involvement in aggregate-formation and demonstrating for the first time that proteomic analysis can be used for direct identification of a disease-causing mutation in myofibrillar myopathy. Comparison of the proteomic results in desminopathy with our previous analysis of aggregate composition in filaminopathy, another myofibrillar myopathy subtype, allows to determine subtype-specific proteomic profile that facilitates identification of the specific disorder. Biological significance Our proteomic analysis provides essential new insights in the composition of pathological protein aggregates in skeletal muscle fibers of desminopathy patients. The results contribute to a better understanding of pathomechanisms in myofibrillar myopathies and provide the basis for hypothesis-driven studies. The detection of specific proteomic profiles in different myofibrillar myopathy subtypes indicates that proteomic analysis may become a useful tool in differential diagnosis of protein aggregate myopathies. This article is part of a Special Issue entitled: From Genome to Proteome: Open Innovations. (C) 2013 Elsevier B.V. All rights reserved

    Recent developments in planet migration theory

    Full text link
    Planetary migration is the process by which a forming planet undergoes a drift of its semi-major axis caused by the tidal interaction with its parent protoplanetary disc. One of the key quantities to assess the migration of embedded planets is the tidal torque between the disc and planet, which has two components: the Lindblad torque and the corotation torque. We review the latest results on both torque components for planets on circular orbits, with a special emphasis on the various processes that give rise to additional, large components of the corotation torque, and those contributing to the saturation of this torque. These additional components of the corotation torque could help address the shortcomings that have recently been exposed by models of planet population syntheses. We also review recent results concerning the migration of giant planets that carve gaps in the disc (type II migration) and the migration of sub-giant planets that open partial gaps in massive discs (type III migration).Comment: 52 pages, 18 figures. Review article to be published in "Tidal effects in Astronomy and Astrophysics", Lecture Notes in Physic
    • …
    corecore