136 research outputs found

    Please Mind the Gap: Highly Condensed P–N Networks in LiP4N7 and Li3−xP6N11−x(NH)x

    Get PDF
    Alkali nitridophosphates AP4N7 and A3P6N11 (A=Na, K, Rb, Cs) have been known for decades. However, their Li homologues have remained elusive. In this work, the highly condensed lithium (imido)nitridophosphates LiP4N7 and Li3−xP6N11−x(NH)x (x=1.66(3)) were synthesized from LiPN2 and P3N5 in the multianvil press at 10 GPa. They constitute the first lithium nitridophosphates with 3D networks exhibiting a degree of condensation larger than 0.5 and high thermal stability. LiP4N7 crystallizes in the orthorhombic space group P212121 with a=4.5846(6) Å, b=8.0094(11) Å, and c=13.252(2) Å (Z=4). Li3−xP6N11−x(NH)x crystallizes in the triclinic space group Purn:x-wiley:09476539:media:chem202303251:chem202303251-math-0001 with Z=2, a=4.6911(11) Å, b=7.024(2) Å, c=12.736(3) Å, α=87.726(11), β=80.279(11), and γ=70.551(12)°. Both compounds are stable against hydrolysis in air

    Design and functional analysis of heterobifunctional multivalent phage capsid inhibitors blocking the entry of influenza virus

    Get PDF
    Multiple conjugation of virus-binding ligands to multivalent carriers is a prominent strategy to construct highly affine virus binders for the inhibition of viral entry into host cells. In a previous study, we introduced rationally designed sialic acid conjugates of bacteriophages (Q beta) that match the triangular binding site geometry on hemagglutinin spike proteins of influenza A virions, resulting in effective infection inhibition in vitro and in vivo. In this work, we demonstrate that even partially sialylated Q beta conjugates retain the inhibitory effect despite reduced activity. These observations not only support the importance of trivalent binding events in preserving high affinity, as supported by computational modeling, but also allow us to construct heterobifunctional modalities. Capsids carrying two different sialic acid ligand-linker structures showed higher viral inhibition than their monofunctional counterparts. Furthermore, capsids carrying a fluorescent dye in addition to sialic acid ligands were used to track their interaction with cells. These findings support exploring broader applications as multivalent inhibitors in the future

    Design and Functional Analysis of Heterobifunctional Multivalent Phage Capsid Inhibitors Blocking the Entry of Influenza Virus

    Get PDF
    Multiple conjugation of virus-binding ligands to multivalent carriers is a prominent strategy to construct highly affine virus binders for the inhibition of viral entry into host cells. In a previous study, we introduced rationally designed sialic acid conjugates of bacteriophages (Qβ) that match the triangular binding site geometry on hemagglutinin spike proteins of influenza A virions, resulting in effective infection inhibition in vitro and in vivo. In this work, we demonstrate that even partially sialylated Qβ conjugates retain the inhibitory effect despite reduced activity. These observations not only support the importance of trivalent binding events in preserving high affinity, as supported by computational modeling, but also allow us to construct heterobifunctional modalities. Capsids carrying two different sialic acid ligand–linker structures showed higher viral inhibition than their monofunctional counterparts. Furthermore, capsids carrying a fluorescent dye in addition to sialic acid ligands were used to track their interaction with cells. These findings support exploring broader applications as multivalent inhibitors in the future

    Evaluating the effects of an exercise program (Staying UpRight) for older adults in long-term care on rates of falls: study protocol for a randomised controlled trial

    Get PDF
    Background: Falls are two to four times more frequent amongst older adults living in long-term care (LTC) than community-dwelling older adults and have deleterious consequences. It is hypothesised that a progressive exercise program targeting balance and strength will reduce fall rates when compared to a seated exercise program and do so cost effectively. Methods/design: This is a single blind, parallel-group, randomised controlled trial with blinded assessment of outcome and intention-to-treat analysis. LTC residents (age ≥ 65 years) will be recruited from LTC facilities in New Zealand. Participants (n = 528 total, with a 1:1 allocation ratio) will be randomly assigned to either a novel exercise program (Staying UpRight), comprising strength and balance exercises designed specifically for LTC and acceptable to people with dementia (intervention group), or a seated exercise program (control group). The intervention and control group classes will be delivered for 1 h twice weekly over 1 year. The primary outcome is rate of falls (per 1000 person years) within the intervention period. Secondary outcomes will be risk of falling (the proportion of fallers per group), fall rate relative to activity exposure, hospitalisation for fall-related injury, change in gait variability, volume and patterns of ambulatory activity and change in physical performance assessed at baseline and after 6 and 12 months. Cost-effectiveness will be examined using intervention and health service costs. The trial commenced recruitment on 30 November 2018. Discussion: This study evaluates the efficacy and cost-effectiveness of a progressive strength and balance exercise program for aged care residents to reduce falls. The outcomes will aid development of evidenced-based exercise programmes for this vulnerable population. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN12618001827224. Registered on 9 November 2018. Universal trial number U1111-1217-7148

    PSM Peptides From Community-Associated Methicillin-Resistant Staphylococcus aureus Impair the Adaptive Immune Response via Modulation of Dendritic Cell Subsets in vivo

    Get PDF
    Dendritic cells (DCs) are key players of the immune system and thus a target for immune evasion by pathogens. We recently showed that the virulence factors phenol-soluble-modulins (PSMs) produced by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strains induce tolerogenic DCs upon Toll-like receptor activation via the p38-CREB-IL-10 pathway in vitro. Here, we addressed the hypothesis that S. aureus PSMs disturb the adaptive immune response via modulation of DC subsets in vivo. Using a systemic mouse infection model we found that S. aureus reduced the numbers of splenic DC subsets, mainly CD4+ and CD8+ DCs independently of PSM secretion. S. aureus infection induced upregulation of the C-C motif chemokine receptor 7 (CCR7) on the surface of all DC subsets, on CD4+ DCs in a PSM-dependent manner, together with increased expression of MHCII, CD86, CD80, CD40, and the co-inhibitory molecule PD-L2, with only minor effects of PSMs. Moreover, PSMs increased IL-10 production in the spleen and impaired TNF production by CD4+ DCs. Besides, S. aureus PSMs reduced the number of CD4+ T cells in the spleen, whereas CD4+CD25+Foxp3+ regulatory T cells (Tregs) were increased. In contrast, Th1 and Th17 priming and IFN-γ production by CD8+ T cells were impaired by S. aureus PSMs. Thus, PSMs from highly virulent S. aureus strains modulate the adaptive immune response in the direction of tolerance by affecting DC functions

    Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry

    Get PDF
    Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion1,2,3,4. Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies5 and peptides6 or that address late steps of the viral replication cycle

    Expression and purification of recombinant G protein-coupled receptors: A review

    Get PDF
    Given their extensive role in cell signalling, GPCRs are significant drug targets; despite this, many of these receptors have limited or no available prophylaxis. Novel drug design and discovery significantly rely on structure determination, of which GPCRs are typically elusive. Progress has been made thus far to produce sufficient quantity and quality of protein for downstream analysis. As such, this review highlights the systems available for recombinant GPCR expression, with consideration of their advantages and disadvantages, as well as examples of receptors successfully expressed in these systems. Additionally, an overview is given on the use of detergents and the styrene maleic acid (SMA) co-polymer for membrane solubilisation, as well as purification techniques

    Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device

    Get PDF
    This study aimed to validate a wearable device’s walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson’s Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and − 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application. Trial registration: ISRCTN – 12246987
    • …
    corecore