261 research outputs found

    Direct evidence for local oscillatory current sources and intracortical phase gradients in turtle visual cortex

    Get PDF
    Visual stimuli induce oscillations in the membrane potential of neurons in cortices of several species. In turtle, these oscillations take the form of linear and circular traveling waves. Such waves may be a consequence of a pacemaker that emits periodic pulses of excitation that propagate across a network of excitable neuro-nal tissue or may result from continuous and possibly reconfigu-rable phase shifts along a network with multiple weakly coupled neuronal oscillators. As a means to resolve the origin of wave propagation in turtle visual cortex, we performed simultaneous measurements of the local field potential at a series of depths throughout this cortex. Measurements along a single radial pen-etration revealed the presence of broadband current sources, with a center frequency near 20 Hz ( g band), that were activated by visual stimulation. The spectral coherence between sources at two well-separated loci along a rostral– caudal axis revealed the pres-ence of systematic timing differences between localized cortical oscillators. These multiple oscillating current sources and their timing differences in a tangential plane are interpreted as the neuronal activity that underlies the wave motion revealed in previous imaging studies. The present data provide direct evidence for the inference from imaging of bidirectional wave motion that the stimulus-induced electrical waves in turtle visual cortex corre-spond to phase shifts in a network of coupled neuronal oscillators

    Prevention of Fetal Alcohol Damage in Northern Native Communities: A Practical School-based Approach

    Get PDF
    This article describes a Fetal Alcohol Syndrome prevention program, FASD in Lab Mice, that had a dramatic effect in increasing Alaska Native students\u27 understanding of the lifelong neurological and physical damage caused by drinking during pregnancy and, more importantly, led them to engage in active prevention efforts in their own and other Native communities. Informational programs typically used in the schools create little student interest and students often do not see connections between their own experience and the atypically extreme examples such prevention programs tend to emphasize. The FASD in Lab Mice prevention program, using actual experiments conducted by the students themselves, provides compelling evidence regarding the pervasive effects of alcohol on the developing fetus. The program received strong support from Native communities and incorporated community values of reverence for animal life with the use of animals for practical human purposes. Long-term quantitative as well as qualitative research on the effectiveness of this program model is needed

    An in vivo biosensor for neurotransmitter release and in situ receptor activity.

    Get PDF
    Tools from molecular biology, combined with in vivo optical imaging techniques, provide new mechanisms for noninvasively observing brain processes. Current approaches primarily probe cell-based variables, such as cytosolic calcium or membrane potential, but not cell-to-cell signaling. We devised cell-based neurotransmitter fluorescent engineered reporters (CNiFERs) to address this challenge and monitor in situ neurotransmitter receptor activation. CNiFERs are cultured cells that are engineered to express a chosen metabotropic receptor, use the G(q) protein-coupled receptor cascade to transform receptor activity into a rise in cytosolic [Ca(2+)] and report [Ca(2+)] with a genetically encoded fluorescent Ca(2+) sensor. The initial realization of CNiFERs detected acetylcholine release via activation of M1 muscarinic receptors. We used chronic implantation of M1-CNiFERs in frontal cortex of the adult rat to elucidate the muscarinic action of the atypical neuroleptics clozapine and olanzapine. We found that these drugs potently inhibited in situ muscarinic receptor activity

    Texture Coding in the Rat Whisker System: Slip-Stick Versus Differential Resonance

    Get PDF
    Rats discriminate surface textures using their whiskers (vibrissae), but how whiskers extract texture information, and how this information is encoded by the brain, are not known. In the resonance model, whisker motion across different textures excites mechanical resonance in distinct subsets of whiskers, due to variation across whiskers in resonance frequency, which varies with whisker length. Texture information is therefore encoded by the spatial pattern of activated whiskers. In the competing kinetic signature model, different textures excite resonance equally across whiskers, and instead, texture is encoded by characteristic, nonuniform temporal patterns of whisker motion. We tested these models by measuring whisker motion in awake, behaving rats whisking in air and onto sandpaper surfaces. Resonant motion was prominent during whisking in air, with fundamental frequencies ranging from approximately 35 Hz for the long Delta whisker to approximately 110 Hz for the shorter D3 whisker. Resonant vibrations also occurred while whisking against textures, but the amplitude of resonance within single whiskers was independent of texture, contradicting the resonance model. Rather, whiskers resonated transiently during discrete, high-velocity, and high-acceleration slip-stick events, which occurred prominently during whisking on surfaces. The rate and magnitude of slip-stick events varied systematically with texture. These results suggest that texture is encoded not by differential resonant motion across whiskers, but by the magnitude and temporal pattern of slip-stick motion. These findings predict a temporal code for texture in neural spike trains

    Active Spatial Perception in the Vibrissa Scanning Sensorimotor System

    Get PDF
    Haptic perception is an active process that provides an awareness of objects that are encountered as an organism scans its environment. In contrast to the sensation of touch produced by contact with an object, the perception of object location arises from the interpretation of tactile signals in the context of the changing configuration of the body. A discrete sensory representation and a low number of degrees of freedom in the motor plant make the ethologically prominent rat vibrissa system an ideal model for the study of the neuronal computations that underlie this perception. We found that rats with only a single vibrissa can combine touch and movement to distinguish the location of objects that vary in angle along the sweep of vibrissa motion. The patterns of this motion and of the corresponding behavioral responses show that rats can scan potential locations and decide which location contains a stimulus within 150 ms. This interval is consistent with just one to two whisk cycles and provides constraints on the underlying perceptual computation. Our data argue against strategies that do not require the integration of sensory and motor modalities. The ability to judge angular position with a single vibrissa thus connects previously described, motion-sensitive neurophysiological signals to perception in the behaving animal

    Identification of Neural Circuits by Imaging Coherent Electrical Activity with FRET-Based Dyes

    Get PDF
    AbstractWe show that neurons that underlie rhythmic patterns of electrical output may be identified by optical imaging and frequency-domain analysis. Our contrast agent is a two-component dye system in which changes in membrane potential modulate the relative emission between a pair of fluorophores. We demonstrate our methods with the circuit responsible for fictive swimming in the isolated leech nerve cord. The output of a motor neuron provides a reference signal for the phase-sensitive detection of changes in fluorescence from individual neurons in a ganglion. We identify known and possibly novel neurons that participate in the swim rhythm and determine their phases within a cycle. A variant of this approach is used to identify the postsynaptic followers of intracellularly stimulated neurons

    Two-Photon Imaging of Cortical Surface Microvessels Reveals a Robust Redistribution in Blood Flow after Vascular Occlusion

    Get PDF
    A highly interconnected network of arterioles overlies mammalian cortex to route blood to the cortical mantle. Here we test if this angioarchitecture can ensure that the supply of blood is redistributed after vascular occlusion. We use rodent parietal cortex as a model system and image the flow of red blood cells in individual microvessels. Changes in flow are quantified in response to photothrombotic occlusions to individual pial arterioles as well as to physical occlusions of the middle cerebral artery (MCA), the primary source of blood to this network. We observe that perfusion is rapidly reestablished at the first branch downstream from a photothrombotic occlusion through a reversal in flow in one vessel. More distal downstream arterioles also show reversals in flow. Further, occlusion of the MCA leads to reversals in flow through approximately half of the downstream but distant arterioles. Thus the cortical arteriolar network supports collateral flow that may mitigate the effects of vessel obstruction, as may occur secondary to neurovascular pathology

    Quantitative cerebral blood flow with optical coherence tomography

    Get PDF
    Absolute measurements of cerebral blood flow (CBF) are an important endpoint in studies of cerebral pathophysiology. Currently no accepted method exists for in vivo longitudinal monitoring of CBF with high resolution in rats and mice. Using three-dimensional Doppler Optical Coherence Tomography and cranial window preparations, we present methods and algorithms for regional CBF measurements in the rat cortex. Towards this end, we develop and validate a quantitative statistical model to describe the effect of static tissue on velocity sensitivity. This model is used to design scanning protocols and algorithms for sensitive 3D flow measurements and angiography of the cortex. We also introduce a method of absolute flow calculation that does not require explicit knowledge of vessel angles. We show that OCT estimates of absolute CBF values in rats agree with prior measures by autoradiography, suggesting that Doppler OCT can perform absolute flow measurements in animal models.National Institutes of Health (U.S.) (Grant number R01-NS057476)National Institutes of Health (U.S.) (Grant number P01NS055104)National Institutes of Health (U.S.) (Grant number P50NS010828)ational Institutes of Health (U.S.) (Grant number K99NS067050)National Institutes of Health (U.S.) (Grant number R01-CA075289-13)United States. Air Force Office of Scientific Research (FA9550-07-1-0014)United States. Dept. of Defense. Medical Free Electron Laser Program (FA9550-07-1-0101
    corecore