28,024 research outputs found

    Solar Energetic Particle Events in the 23rd Solar Cycle: Interplanetary Magnetic Field Configuration and Statistical Relationship with Flares and CMEs

    Full text link
    We study the influence of the large-scale interplanetary magnetic field configuration on the solar energetic particles (SEPs) as detected at different satellites near Earth and on the correlation of their peak intensities with the parent solar activity. We selected SEP events associated with X and M-class flares at western longitudes, in order to ensure good magnetic connection to Earth. These events were classified into two categories according to the global interplanetary magnetic field (IMF) configuration present during the SEP propagation to 1AU: standard solar wind or interplanetary coronal mass ejections (ICMEs). Our analysis shows that around 20% of all particle events are detected when the spacecraft is immersed in an ICME. The correlation of the peak particle intensity with the projected speed of the SEP-associated coronal mass ejection is similar in the two IMF categories of proton and electron events, ≈0.6\approx 0.6. The SEP events within ICMEs show stronger correlation between the peak proton intensity and the soft X-ray flux of the associated solar flare, with correlation coefficient r= r=\,0.67±\pm0.13, compared to the SEP events propagating in the standard solar wind, r= r=\,0.36±\pm0.13. The difference is more pronounced for near-relativistic electrons. The main reason for the different correlation behavior seems to be the larger spread of the flare longitude in the SEP sample detected in the solar wind as compared to SEP events within ICMEs. We discuss to which extent observational bias, different physical processes (particle injection, transport, etc.), and the IMF configuration can influence the relationship between SEPs and coronal activity.Comment: http://adsabs.harvard.edu.ezproxy.obspm.fr/abs/2013SoPh..282..579

    A Classical Solution in Six-dimensional Gauge Theory with Higher Derivative Coupling

    Full text link
    We show that the spin connection of the standard metric on a six-dimensional sphere gives an exact solution to the generalized self-dual equations suggested by Tchrakian some years ago. We work on an SO(6) gauge theory with a higher-derivative coupling term. The model consists of vector fields only. The pseudo-energy is bound from below by a topological charge which is proportional to the winding number of spatial S^5 around the internal space SO(6). The fifth homotopy group of SO(6) is, indeed, Z. The coupling constant of higher derivative term is quadratic in the radius of the underlying space S^6.Comment: 7 pages, comments and a reference added, typos correcte

    Relaxing Cosmological Constraints on Large Extra Dimensions

    Full text link
    We reconsider cosmological constraints on extra dimension theories from the excess production of Kaluza-Klein gravitons. We point out that, if the normalcy temperature is above 1 GeV, then graviton states produced at this temperature will decay early enough that they do not affect the present day dark matter density, or the diffuse gamma ray background. We rederive the relevant cosmological constraints for this scenario.Comment: 17 pages, latex, revtex4; added a short discussion of other constraints, reference

    Massive color-octet bosons and the charge asymmetries of top quarks at hadron colliders

    Get PDF
    Several models predict the existence of heavy colored resonances decaying to top quarks in the TeV energy range that might be discovered at the LHC. In some of those models, moreover, a sizable charge asymmetry of top versus antitop quarks might be generated. The detection of these exotic resonances, however, requires selecting data samples where the top and the antitop quarks are highly boosted, which is experimentally very challenging. We asses that the measurement of the top quark charge asymmetry at the LHC is very sensitive to the existence of excited states of the gluon with axial-vector couplings to quarks. We use a toy model with general flavour independent couplings, and show that a signal can be detected with relatively not too energetic top and antitop quarks. We also compare the results with the asymmetry predicted by QCD, and show that its highest statistical significance is achieved with data samples of top-antitop quark pairs of low invariant masses.Comment: 20 page

    Five-Dimensional Unification of the Cosmological Constant and the Photon Mass

    Get PDF
    Using a non-Riemannian geometry that is adapted to the 4+1 decomposition of space-time in Kaluza-Klein theory, the translational part of the connection form is related to the electromagnetic vector potential and a Stueckelberg scalar. The consideration of a five-dimensional gravitational action functional that shares the symmetries of the chosen geometry leads to a unification of the four-dimensional cosmological term and a mass term for the vector potential.Comment: 8 pages, LaTe

    Experimental designs for field and semi-field studies with solitary wild bees

    Get PDF
    The newly proposed EFSA risk assessment of plant protection products for pollinators includes for the first time not only honey bees but also non-Apis pollinators (OEPP/EPPO 2010, EFSA 2013). No official guidelines for standardized tests exist so far. We performed field and semi-field studies to evaluate suitable test designs and handling procedures for the test organisms. The objective of these studies was the development of a test system for trials under field- and semi-field conditions with the red mason bee Osmia bicornis L. (Hymenoptera: Megachilidae). The trials were conducted in two different crops, winter oilseed rape (Brassica napus) and Phacelia (Phacelia tanacetifolia), with different nesting materials, test designs and release techniques

    Exact General Relativistic Thick Disks

    Get PDF
    A method to construct exact general relativistic thick disks that is a simple generalization of the ``displace, cut and reflect'' method commonly used in Newtonian, as well as, in Einstein theory of gravitation is presented. This generalization consists in the addition of a new step in the above mentioned method. The new method can be pictured as a ``displace, cut, {\it fill} and reflect'' method. In the Newtonian case, the method is illustrated in some detail with the Kuzmin-Toomre disk. We obtain a thick disk with acceptable physical properties. In the relativistic case two solutions of the Weyl equations, the Weyl gamma metric (also known as Zipoy-Voorhees metric) and the Chazy-Curzon metric are used to construct thick disks. Also the Schwarzschild metric in isotropic coordinates is employed to construct another family of thick disks. In all the considered cases we have non trivial ranges of the involved parameter that yield thick disks in which all the energy conditions are satisfied.Comment: 11 pages, RevTex, 9 eps figs. Accepted for publication in PR

    Kaluza-Klein Dark Matter

    Get PDF
    We propose that cold dark matter is made of Kaluza-Klein particles and explore avenues for its detection. The lightest Kaluza-Klein state is an excellent dark matter candidate if standard model particles propagate in extra dimensions and Kaluza-Klein parity is conserved. We consider Kaluza-Klein gauge bosons. In sharp contrast to the case of supersymmetric dark matter, these annihilate to hard positrons, neutrinos and photons with unsuppressed rates. Direct detection signals are also promising. These conclusions are generic to bosonic dark matter candidates.Comment: 4 pages, 3 figures, discussion of spin-independent cross section clarified, references added, published versio
    • …
    corecore