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Exact general relativistic thick disks
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A method to construct exact general relativistic thick disks that is a simple generalization of the “displace,
cut, and reflect” method commonly used in Newtonian, as well as, in Einstein theory of gravitation is pre-
sented. This generalization consists in the addition of a new step in the above mentioned method. The new
method can be pictured as a “displace, dilt, and reflect” method. In the Newtonian case, the method is
illustrated in some detail with the Kuzmin-Toomre disk. We obtain a thick disk with acceptable physical
properties. In the relativistic case two solutions of the Weyl equations, the Weyl gamma (alswi&known as
the Zipoy-Voorhees metricand the Chazy-Curzon metric, are used to construct thick disks. Also, the
Schwarzschild metric in isotropic coordinates is employed to construct another family of thick disks. In all the
considered cases we have nontrivial ranges of the involved parameter that yield thick disks in which all the
energy conditions are satisfied.
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I. INTRODUCTION equations corresponding to staftic—11] and stationary12—
14] thin disks have been obtained by different authors, with

Exact solutions of the Einstein equations are associatedr without radial pressure. Thin disks with radial tension

with highly idealized physical systems that have some ex{15], magnetic fieldd16] and magnetic and electric fields
ceptional geometrical properties. In some cases with a simplel7] have been also studied. The nonlinear superposition of a
exact solution one can capture a significant part of the physidisk and a black hole was first considered by Lemos and
cal properties of nontrivial systems. Also, in nonlinear theo-Letelier [7]. This solution and its generalizations have been
ries such as general relativity and fluid dynamics the exac$tudied in some detail in Refg18-25. Recently the stabil-
solutions play an important role in numerical analysis. Thesdty of circular orbits of particles moving around black holes
solutions can be used to test numerical codes and their ousurrounded by axially symmetric structures have been con-
come. Also they can be employed as initial conditions tosidered in Ref[26]. For a recent survey on relativistic gravi-
describe more realistic situations, e.g., a static solution catating thin disks, see Ref27].

be used as part of the initial conditions for a full dynamical Except for the pressureless disks, all the other disks have
simulation. as source matter with azimuthal pressgrension that is

Since the natural shape of an isolated self-gravitating fluidifferent from the radial pressuréension. However, in

is axially symmetric, the solutions of Einstein’s field equa-some cases these disks can be interpreted as the superposi-
tions with this symmetry play a particularly important role in tion of two counterrotating perfect fluids. A detailed study of
the astrophysical applications of general relativity. In particu-the counterrotating model for the case of static thin disks is
lar disklike configurations of matter are of great interest,presented in Ref[28]. Recently, more realistic models of
since they can be used as models of galaxies or accretiahin disks and thin disks with halos made of perfect fluids
disks. Also, these disks can be used as a starting point favere considered in Ref29].

representing more realistic models in which the bulge and In all the disks mentioned above an inverse style method
halo of the galaxy are considered. was used to solve the Einstein equations. The metric repre-

Solutions for static thin disks without radial pressure weresenting the disk is estimated and then used to compute the

first studied by Bonnor and Sackfie[d] and Morgan and source(energy-momentum tensofThis method was named
Morgan([2] and with radial pressure by Morgan and Morganby Synge theg method[30] in contrast to the method or
[3]. The first solution represents disks made of pressurelesgirect method in which the source is given and the Einstein
dust, whereas the second disks are made under azimutheduations are solved. Thenethod has been used to generate
pressure but without radial pressure. The third disk is madeisks by the Jena grouf81-37. Essentially, they are ob-
of an anisotropic fluid with nonzero radial pressure. Thetained by solving a Riemann-Hilbert problem. These solu-
Bonnor-Sackfield disk has a singular rim. These disks ar¢ions are highly nontrivial, but they deserve special attention
finite. because of their clear physical meaning.

Several classes of exact solutions of the Einstein field In the solutions obtained by tleemethod the well-known
“displace, cut, and reflect” method is used. The idea of the
method is simple. Given a solution of the vacuum Einstein

*Email address: guillego@uis.edu.co equations, a cut is made above all singularities or sources.
"Email address: letelier@ime.unicamp.br The identification of this solution with its mirror image
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yields relativistic models of disks. In general, these disks are
of infinite extension and finite mass.

The aim of this paper is to consider disks beyond the thin
disk limit to add a new degree of reality to these geometric
models of galaxies. Even though in first approximation the /
galactic disks can be considered to be very thin, e.g., in our
galaxy the radius of the disk is 10 kpc and its thickness is 1
kpc. In a more realistic model the thickness of the disk needs @ (b)
to be considered. Also it is well known in fluid mechanics
that the addition of a new dimension can make drarn"’m(1“eflect method from the gravitational field of a mass point{arthe

change_s in the dynamics of the fluid. I_n principle,_this NeWspace with a singularity is displaced and cut by a pléteshed
dimension will also change the dynamical properties of thgjne) |n (b) the part with singularities is disregarded and the upper

disk source, e.g., its stability. _ part is reflected on the plane.
In this paper we generalize the displace, cut, and reflect

method in order to obtain thick disk models from vacuumyiq, Now this method has an additional step and can be
solutions of Einstein equations. We shall replace the surfacg, e gisplace, cufill, and reflect. After we disregard the
of discontinuity of the metric derivatives with a thick shell in part of the space with singularities, we put a thick shell be-
suc_h a way th"’.‘t the matter content of the disk ‘.N'” be .de'low the surface. Then we use the bottom surface of the shell
scribed by continuous functions with continuous first derlva—,[0 make the inversion. The procedure is illustrated in Fig. 2.
tives. This generalization can be named the “displace, cut, Mathematically the method is equivalent to making the

fill, and reflect” method. The disks obtained with this transformatiorz— h(z) + b, whereb is a constant ant(z)

method, in general, will be of infinite extension and finite is an even function of. In Newtonian gravity, the potential
mass. Also, as in the case of thin disks, the matter that form&)(r 2) is a solution of the Laplace equation,

the thick disks will not obey simple equations of state and in

some regions of the disk the pressure can change sign given

a rise to tensions, although the energy condition will be ful- V2h=Pp . + &-HD -0 (1)

. . . . rr zz 1

filled. The models of thick disks presented can be considered ’ r ’

as generalizations of models of thin disks studied in Refs.

[17] and[29]. where ¢, ¢,z) are the usual cylindrical coordinates. After we
The article is structured as follows. In Sec. Il we presentmake the transformatiog—h(z)+b, the above equation

in some detail, the main idea of the displace, dilit, and  |eads to

reflect method in Newtonian gravity. The method is then

applied, in Sec. Ill, to construct relativistic thick disks in 2d — "n2_

Weyl coordinates. We also study the general expression for VER=NT® p +[(N)7=1]P pn, @

the energy-momentum tensor of the disks. The method is ) o ) o ]

illustrated by taking two simple Wey! solutions that lead to Where primes indicate differentiation with respectzto

thick disks, in agreement with all the energy conditions. In For the case of thin disks we takez)=|z|. Note that

Sec. IV we apply the method to the Schwarzschild solutiorzZl =26(2) —1 andd,8(z) = 5(z) whered(z) is the Heave-

in isotropic cylindrical coordinates. The disk obtained alsoSide function ands(z) is the usual Dirac distribution. By

satisfies all the energy conditions; this disk has equal aziuSing Ed.(2), the Poisson equation leads to a mass density

muthal and radial pressures and different vertical pressurdliven by

Finally, in Sec. V we summarize our main results.

FIG. 1. Construction of a thin disk by the displace, cut, and

27Gp(r,z)=® ,6(2). 3)

Il. NEWTONIAN THICK DISKS L .
We have a surface distribution of matter located in the plane

The Newtonian gravitational potential of a thin disk canz=0. In Fig. 3, with dashed lines, we pldt(z) and its
be obtained by a simple procedure, the displace, cut, anderivatives.
reflect method, of Kuzmif38]. The method can be divided
in the following steps: First, choose a surface that divides the
usual space in two parts: one with no singularities or sources
and the other with the sources. Second, disregard the part of
the space with singularities. Third, use the surface to make
an inversion of the nonsingular part of the space. The result
will be a space with a singularity that is a delta function with (a) (b)
support onz=0. This procedure is depicted in Fig. 1.

In order to obtain a thick disk we need to modify the  F|G. 2. Construction of a thick disk by the displace, cut, fill, and
above procedure. We essentially need to replace the surfaggfiect method. Ira), after disregarding the part with singularities,
of discontinuity with a thick shell in such a way that the we put a thick shell below the plane. (b), we reflect the resultant
matter content of the disk be described by continuous funceonfiguration on the bottom surface of the shell.
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(@) (b (©

FIG. 3. The functiorh(z) and its derivatives, for thin diskglashed lingand thick diskgsolid line). In (a) we ploth(z), in (b) h’'(z),
and in(c) h"(2).

For the case of thick disks the functidn(z) must be The functionh(z) presented in Eq(4) is the simplest
selected in such a way thdt and its first derivatives are function that has the desired properties. The part of the func-
continuous across the plare=0. Let us take a function tion in the domairjz|<a can be changed by superposition of

h(z) defined as even functions of. In |z|=a this new function needs to be
matched continuously with linear functions afsuch that
z—-al2, z=a, h'(z)=1, as in Eqg.(4). In this case the mass density can
5 depend on the variabtein a more general way.
h(z)= z°[2a, —asz=a, (4) It is instructive to obtain the surface thin disk dengigy
o) associated with Eq.7),
—z—al2, z<—a.
Hence, by taking the functioh(z) defined above we can o= m—b (9)
generate disks of thickness2ocated in the region-a<z 27 (r?+b?)%?

<a. In Fig. 3 we ploth(z) and its derivativegsolid lines.

When |z|=a the functionh(z) is a linear function ofz  as a limit of the thick disk volume densit@). To obtain the
such thath’(z)=1. Hence, its second derivative is zero. Surface density of the thin disk from the volume dengity
Then the mass density vanishes outside the disk. Since thee first set
first derivative is continuous atz|=a (see Fig. 3 and the
second derivative is piecewise constant, the mass depsity, 2 =2ap(r,2). (10

will be well defined inside the disk,
Now to perform the thin disk limit we set=a¢ and a

AnGa’p(r,z)=ad +(22—a®®d up, (5)  =pé& (a andg artitrary constantsin 3 and we take the limit

lim;_ 0. This limit is just Eq.(9).

for |zZl<a andp=0 for |z|>a.
As a simple example we can consider the usual potential

- . . . . Ill. RELATIVISTIC THICK DISKS IN WEYL
for a mass point, written in cylindrical coordinates as

COORDINATES

D Gm 6 When the matter is absent, the metric for a static axially
- NaEsa 6) symmetric spacetime can be cast without losing generality as

By performing the transformatiorn—h(z)+b in the previ- ds’=—e**dt?+e ?*?[r’de?+e* (dr*+dZ)], (11

ous potential, we obtain the mass densities .
whered and A are functions of andz only. The ranges of

mb 8z) the coordinatesd,r,z) are the usual for cylindrical coordi-
eI (7)  nates (Weyl coordinates and —w<t<c. The Einstein
2m(r°+b%) vacuum equations for this metric yield the Weyl equations

p(r,z)

for a thin disk(Kuzmin-Toomre disk38,39)), and [40,41)
(0]
ot 2)= m[3z°+2a(b—a)] . 3m(a®-z%)(z*+ 2ab)2’ D, + T-'Jrq)lz:o, (123
8ma’R3 16ma*R®
® A =r(% -2, (12b
where R=r?+(h+b)? for a thick disk. Whenb=a, the
mass density will be positive everywhere. A=2r0 D, (120
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From a solution of Einstein vacuum equations corre- 2e2(¢=A)
sponding to a Weyl metri¢11), we can construct a thick disk p=———[a® y+(Z—a%) P py]. (17)
model by means of the displace, cut, fill, and reflect method a

using the transformatioz—h(z) +b, with h(z) given by N )
Eq. (4). The energy-momentum tensor of the disk can belhe strong energy condition requires tpat 0, whereas the

computed using the Einstein equations in the matter, writtei/€ak energy condition imposes the conditierr0. The
as dominant energy condition is equivalent requirify,/e|

<1, |p,/€e|<1, and|p,/€|<1; see for instance, Ref42].
One can obtain the quantities associated with a general rela-

Tap=Rab= 59anR, (13)  tivistic thin disk from the corresponding quantities associated
with the thick disk using the same limit procedure described
in units such that=87G=1. in the Newtonian disk case.
By using the Einstein equatiori$2), the nonzero compo-
nents ong are A. Thick disks from the Chazy-Curzon metric
2@ 1) As a first example we apply the displace, cut, fill, and
Ti= e [a(A —2® ) reflect method to obtain thick disks using the Chazy-Curzon
t a2 h h solution[43,44], written in Weyl coordinates as
+(22—a?) (D4, 2P pnt A )], (149 Do g (183
e2(®—A)
— 2 2 2
Tz— > [aA’h‘F(Z —a )((I) h+A,hh)]1 m2r2
a ' A=- (18b
(14b) 2R
L et where R=r2+(h+b)?, mandb are positive constants, and
=0 (z°-a%)dy,, (149 n(z) is given by Eq.(4).
Now we rescale the variables and the parameters in terms
Q2@ 1) of the disk thicknessa. We setr=ar, z=az, R=aR, b
Ti= ———(a’~ ) d%, (14d  =ab, andm=am. From Egs.(14) and(17), we obtain
a ,
L omered ey
valid for the region—a=<z=a. Outside this region we have 5= T{Z[SZZJF 2(b—1)]R?+3(1-2%)(2?+2b)?},
Tb=0. 2
For the above expressions we can see that the radial stress (193

T, is negative(we have radial tensionOn the other hand,

sinceT>=—T,, we have vertical pressure. Defining the or- ~ me?(® M) ~ ~ P N~
thonormal tetrraqvb,xb,Yb,Zb}, where TR 143z°+2(b-D(RP—mr)R?
va=e *(1,0,0,0, (153 +[6(R3—2mr2) + mR2](1-22)(Z%+2b)?},
o® (19b)
X?=— (0,100, (15b)
r ~2 2(®-A)
P.= me ———(4r3{[37%+2(b—1)]R?
Y2=e®~1(0,0,1,0, (159 ¢ 4R
73=e?1(0,0,0., (150) +3(1-2%)(22+2b)%} + (22— 1) (22 + 2b)*R?),
o . (199
we can cast the energy-momentum tensor in its canonical
o h= T e @b (199
= = z°—1)(z ,
Too= VoVt P XeXot P YaYot pZeZy.  (16) 4R
Heree=—T; is the energy density,,=T¢ is the azimuthal F2e2(@—A)
stressp, =T/ =—TZis the radial tension, ang,=T?is the p,= = [(1-7%)(Z%+2b)?], (199
vertical pressure.
From Eq.(14) we get the “effective Newtonian” density, 5 5 _
p=€+p,+p,+p,=etp,, wherep=a?p, e=a%e andp;=a2p;.
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FIG. 4. For a thick disk obtained from the Chazy-Curzon solution with1l andb=2 we plot(a) the dimensionless Newtonian density
‘» and (b) the dimensionless energy densityas functions of andz.

Equation(193 and the conditiol=1 imply p>0. Then, The behavior of the stresses is also better illustrated
whenb=1 the strong energy condition is satisfied. From Eg.9raphically. In Fig. 5 we plot the dimensionless azimuthal
(19h we conclude thate=0 whenever R=2mr2 and stressp,, and vertical pressurp,, as functions of and E
b=1. From the definition oR we conclude that in order to 1he radial pressure is given k= —p,. Again we setm

havee=0 everywhere, we need =1 andb=2. The azimuthal stress is negative at the central
region of the disk, then increases to have a positive maxi-
0<r~n<\/§B mum on thez=0 plane, for a value of ~1.5a. Finally, it

decreases monotonically for increasingand also forz—

~ +a. The behavior of the vertical pressure is like that of the

andb=1. densities, with a maximum at the center of the 0 plane
The behavior of the densities is better illustrated graphi-and then it monotonically decreases for increasinglso,

cally. In order to have a disk in agreement with the weak antgh,=0 for z=+a. From Figs. 4 and 5 we can also see that

strong energy conditions, we take=1 andb=2. In Fig. 4  the magnitude of the stresses is about a tenth of the magni-

we plot the effective Newtonian density and the energy dentude of the densities. We have

sity in units ofa?, p, ande, as functions of andz. We can

see that the densities have a maximum at the center of the
z=0 plane. Then the densities decrease monotonically as
increases and also the densities decrease-fot-a. We see
that p and e have similar magnitudes.

The azimuthal stress, as we can see from @§9), is
negative at the center of the disk=0), whereas it is posi-
tive for large values of. The boundary between the region
of negative stress and positive stress is the surface

4RBe2(A )

— 5 P.~0 (200 and so the disks are also in agreement with the dominant
energy condition. Thin disks based on the Chazy-Curzon
metric were studied in Ref8].

f(r,z)= o

with p,, given by Eq.(190.

004
0.03 F
002 |
001

-0.01 |
-0.02 |
-003

FIG. 5. For a thick disk obtained from the Chazy-Curzon solution with1l andb=2 we plot(a) the dimensionless azimuthal pressure
P, and(b) the dimensionless vertical pressyrg.
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B. Thick disks from the Zipoy-Voorhees metric we havep=0, i.e., the strong energy condition is satisfied.

As a second example we take the Weyl gamma metricAlso from R—R3=4k(h+b), with h(z)=z%2, we can

also known as Zipoy-Voorhees solutip#b,46, that in Weyl ~ show that
coordinates can be cast @] o
(Ri+Rp)(RI+R5)
m R1+R2_2k = =~ = =5=>
=—In—=2 4(h+b)RIR
® 2kIn R;+Ry+2K|’ (213 ( JRiR;
~5 oo o
m? [ (Ry+ Ry)?—4K? < —= R2t4k~(h:;b)
A= % n Tle ) (21b (h+b)R5 (h+b)R5

where B=r?+(h+b+k)?, Re=r?+(h+b—k)2, m, b, and

k are positive constants, amdz) is given by Eq.(4). When (b—K)2+ 4kb
k=m this solution leads to the Schwarzschild metric and A<———=-
when k—0 to the Chazy-Curzon solution of the previous b(b—k)
section.

By using Egs.(14) and (17) we obtain, in terms of the Then the conditio’A=1 can be cast as

dimensionless variables used in the preceding section, (B+K)2<B(b-K)2, 23)

A e R Ry R
P Z’Rﬁiﬁg 1 2 17\2
+(1-22)[(Z2+20)(R}-RY) — 2k(R}+R) 1},
(229
- - 2mr3(Ry+Ry)
e=p|l—

RIRSL (R, +Ry)?— 4K?]
m?e?@=M(1-7%) (R~ R,)
ARCRIRS

[(Ry—Ro)RIR
—-2r3(R3-R))], (22b)

~  2mpr’(R+Ry)
Pe ™ ROREL (R + Rp)2— 4K

m2e?@ N (Z2-1)(R,—R,)

[(R,—Ry)RZRZ

ACRRS
—2r(RI-R))1, (220

- MM (Z2-1)(Z2+2b)?] (224
Pr=——== = = )

ORR (Ri+Rp)? |
- m2e2@-MT(1-72)(Z22+2b)?] (22
P= —=>= = =

© RR (Ri+R,)?

wherek=ak, R;=aR;, and R=aR,.
From Eq.(223 and the condition
k(RI+RY)

A= —————=1,
(R—R)RERS

which also leads td#k. This last condition ensures the
nonsingular behavior of the energy denséyand the azi-
muthal stresgp,, .

From Eq.(22b) andr =0 we havee>0. Whenz=1 the
condition

2mr3(Ry+Ry)
=
RERZ[ (Ry+ Ry)2—4K?]

B

gives use>0. Since R>R,, R;+R,=2b, R,>T, and R
=b+k we have

_ m
(b?-k?)(b+k)
Then the conditiorB<1 leads to
0<m<(b2-%k?(b+k). (24)

This relation also yield®>k as a condition to haven>0.
For any other value of andz is not easy to obtain con-

straints over the parameteks b, andm in order to havee
>0. The analysis is better done graphically. By considering

different values ok andb that fulfill the condition(23) we

find thate>0 everywhere in the disks only if we take for
a value less than a tenth of the upper limit provided by the
condition(24). As an example, in Fig. 6 we plot the dimen-

sionless densities ande for a disk withm=3, b=3.5, and

k=1. We can see that, as in the Chazy-Curzon disk, the
density has a maximum at the center of #¥0 plane and
then it decreases monotonically esncreases and also for
z— *a. Also, p and e have similar magnitudes.

The behavior of the stresses is also similar to that pre-
sented in the Chazy-Curzon disk. Again, it is better to do a
graphical presentation. In Fig. 7 we plot the dimensionless

azimuthal stresp,, and the vertical pressurg, for the disk
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03
0.25
0.2
0.18

03
0.25
0.2
0.18

FIG. 6. For a thick disk obtained from the Zipoy-Voorhees solution with 3, b=3.5 andk=1 we plot(a) the effective Newtonian
densityp and(b) the energy density.

with m=3, b=3.5, andk=1. Again we havep,=—p,. As wr_]ereCD angA are functions ofR qnly. In isotropic cylin-
with the Chazy-Curzon disk, the azimuthal stress is negativérical coordinatest(¢,r,z) the metric(25) takes the form
at the central region of the disk, then increases to have a 0B 9AF.24 2 2

positive maximum at thez=0 plane, for a value ofr ds’=—e*Pdt*+e* [ rdp?+dr’+dz’], (26)
~2.5, and finally decreases monotonically. The behavior ofhere nowd and A depend orr andz

the Ve”t'(;ﬁ' Pfesfureljstr']'kféhatl of the dsrt‘f]'“e?t' with at maxl- we will now apply the displace, cut, fill, and reflect
mum at the center of the=0U plane, and then 1t monotoni-  method to the Schwarzschild solution in isotropic coordi-
cally decreases for increasing Also, p,=0 for z=*a. nates

From Figs. 6 and 7 we have ’

PO (273
=|n ,
&<0_2, 2R+ m

€

e 2 ;
=In[1+ | , 27

Pl |P2 2R (27
=1 <0,
€ €

with m a positive constant and?Rr2+z2. Now we set R

_ _ _ ~ =r2+(h+b)?, whereb is a positive constant and(z) is
and so the disks are also in agreement with the dominanjien by Eq.(4).

energy condition. Thin disks based in the Zipoy-Voorhees™ rrom the Einstein equatiorié3) and the orthonormal tet-

metric were considered in REB]. rad {V3,X? Y2 28}, where
—a
IV. THICK DISKS FROM THE SCHWARZSCHILD Vi=e 7(1,0,00, (283
METRIC IN ISOTROPIC COORDINATES o
For a static spherically symmetric spacetime the metric in X#= T(O,l,O,O, (280
isotropic spherical coordinates,R, #,¢) can be cast as
Y2=e""(0,0,1,0, (280
ds?=—e??dt’+ e? [ dR?+ R%(d 6*+ sirf0d ¢?) ],
(29 z*=e""(0,0,0,3, (280

(a)

b)

0.05
0.04 |
0.03 |
002 |
001 |

-0.01 |
-0.02
-003

FIG. 7. For a thick disk obtained from the Zipoy-Voorhees solution with 3, b=3.5 andk=1 we plot(a) the azimuthal stregs, and
(b) the vertical pressurp, .
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FIG. 8. For a thick disk obtained from the Schwarzschild isotropic solution mithb=1, we plot(a) the effective Newtonian density
» and (b) the energy density.

we find that the energy-momentum tensor of the disk can be ~ 16mA(Z2+2b)2(1-72)

written as = —=—== . 30
P T 2R m) (2R m)® (309

Tap=€VaVp+ p<pxaxb+ PrYaYpt+ P Zaly. (29 _
o _ _ _ From Eg.(30b andb>1 we havee>0. On the other
Heree=—T, is the energy density,=T¢ is the azimuthal hand, from Eq.(308 and Z2R>m we havep>0. Since R

. . . r . ~ o~
stress, which is equal to the radial stregs=T;, andp, > his Jast condition is equivalent tob2-m. Therefore,

i . . . L N lition
=T is the vertical stress. The effective Newtonian density IS henB=1 and 0<m< 2B we will have disks in agreement

g'vgpog]yféq"‘gge\f/; FC))E)taeil’_]’: ZUZ?r:;ptZHe dimensionless vari- with thS weak and strong.energy condijcions. Also, these val-
ables previously defined, ues ofm assure the nonsingular behaviormfp,,, Pr, and
p,. We also havep,=p,>0 andp,>0. The vertical and
horizontal stress are then pressures.
As in the preceding section, we perform a graphical
analysis of the solution. In Fig. 8 we piptande for a thick
(303 disk obtained from the Schwarzschild isotropic solution with
~ ~) ~ o omn  Eia . o m=Db=1. The horizontal and vertical pressures are plotted
3m{2[3z°+2(b—1)]R"+3(z°+2b)*(1-2)} in Fig. 9. All the four quantities have a similar behavior, with
2(2R+m)° ' a maximum at the center of the=0 plane, and then it
(30b) monotonically decreases with increasingndz. The relative
magnitudes of the densities and pressures are suchpthat
=e=p,=p,~p,. We have

3mR{2[37°+2(b—1)|R?*+3(Z*+2b)?(1- %)}
(2R—m)(2R+m)°®

o=

€=

~  16m*{[3Z22+2(b—1)]R?+ (22 +2b)2(1-27)}
Pe= (2R ) (2Rt M)

Pz

Pe

€

P

€

(300 <0.4,

2 2 " D2 2 TM\2(1 52
[ 16mA[3z°+ 2(b— 1) R+ (2"+2b)"(1 -2 )}, and so the disks are in agreement with all the energy condi-
tions. Thin disks based on the Schwarzschild solution in iso-
(30d)  tropic coordinates were studied in R¢29], whereas thin

(2R—m)(2R+m)®

(b)

Y
0% e
et
S SIS

FIG. 9. For a thick disk obtained from the Schwarzschild isotropic solutionmitb=1, we plot(a) the horizontal pressure,=p, and
(b) the vertical pressurp, .
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disks based in the Schwarzschild metric in Weyl coordinatesertical pressure. The azimuthal stress is negative at the cen-
were studied in Ref[8]. For the disks in isotropic coordi- tral region of the disks, then has a positive maximum, and
nates we have matter with radial pressure equal to the azfinally decreases monotonically for large valuesraind z
muthal pressuréisotropic matter and for the disks in Weyl — +a, where 2 is the thickness of the disk. The disks
coordinates we have zero radial pressure. obtained are in full agreement with all the energy conditions.
On the other hand, when the method is applied to the
Schwarzschild isotropic metric all the stresses are pressures
V. DISCUSSION and have a behavior like the densities. The disks obtained are

Wi ted thod to obtai i | relativi t.also in full agreement with all the energy conditions.
€ presented a method to obtain exact general relalivistic -y, plan to extend the models of thick disks presented

thick disks as a generalization Of the displa}ce, cut, and .re.ﬂe.z%{long these lines by considering more elaborate functions
{E_ethg_dkconjr?only usedl_to t(_)btaln Ne(\;vtonlat)n and relatlvflsttrl]q,'(z) and by the incorporation of new properties like rotation,
In disks. The generalizalion was done by means ol Mener glectric or magnetic fields or both. Also, we believe

transforma_\t|onz—>h(_z)+b, whereh(z) is an even function that the study of stability in these disks can produce some
of zandb is a positive constant. The functidr(z) must be nontrivial results

selected in such a way that the metric tensor and its first
derivatives will be continuous across the plae0.

All the cases considered lead to thick disks with similar
behavior of the energy and Newtonian effective densities: a
maximum at the center of the central plane of the disks, the
z=0 plane, and then monotonously decreasing for increasing We want to thank CNPq, FAPESP, and COLCIENCIAS
randz for financial support. Also G.A.G. is grateful for the warm

We found that when the method is applied to vacuumhospitality of the DMA-IMECC-UNICAMP where this work
Weyl spacetimes, the thick disks present radial tension andias performed.
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