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Exact general relativistic thick disks
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A method to construct exact general relativistic thick disks that is a simple generalization of the ‘‘displace,
cut, and reflect’’ method commonly used in Newtonian, as well as, in Einstein theory of gravitation is pre-
sented. This generalization consists in the addition of a new step in the above mentioned method. The new
method can be pictured as a ‘‘displace, cut,fill , and reflect’’ method. In the Newtonian case, the method is
illustrated in some detail with the Kuzmin-Toomre disk. We obtain a thick disk with acceptable physical
properties. In the relativistic case two solutions of the Weyl equations, the Weyl gamma metric~also known as
the Zipoy-Voorhees metric! and the Chazy-Curzon metric, are used to construct thick disks. Also, the
Schwarzschild metric in isotropic coordinates is employed to construct another family of thick disks. In all the
considered cases we have nontrivial ranges of the involved parameter that yield thick disks in which all the
energy conditions are satisfied.
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I. INTRODUCTION

Exact solutions of the Einstein equations are associa
with highly idealized physical systems that have some
ceptional geometrical properties. In some cases with a sim
exact solution one can capture a significant part of the ph
cal properties of nontrivial systems. Also, in nonlinear the
ries such as general relativity and fluid dynamics the ex
solutions play an important role in numerical analysis. Th
solutions can be used to test numerical codes and their
come. Also they can be employed as initial conditions
describe more realistic situations, e.g., a static solution
be used as part of the initial conditions for a full dynamic
simulation.

Since the natural shape of an isolated self-gravitating fl
is axially symmetric, the solutions of Einstein’s field equ
tions with this symmetry play a particularly important role
the astrophysical applications of general relativity. In partic
lar disklike configurations of matter are of great intere
since they can be used as models of galaxies or accre
disks. Also, these disks can be used as a starting poin
representing more realistic models in which the bulge a
halo of the galaxy are considered.

Solutions for static thin disks without radial pressure we
first studied by Bonnor and Sackfield@1# and Morgan and
Morgan@2# and with radial pressure by Morgan and Morg
@3#. The first solution represents disks made of pressure
dust, whereas the second disks are made under azim
pressure but without radial pressure. The third disk is m
of an anisotropic fluid with nonzero radial pressure. T
Bonnor-Sackfield disk has a singular rim. These disks
finite.

Several classes of exact solutions of the Einstein fi
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equations corresponding to static@4–11# and stationary@12–
14# thin disks have been obtained by different authors, w
or without radial pressure. Thin disks with radial tensi
@15#, magnetic fields@16# and magnetic and electric field
@17# have been also studied. The nonlinear superposition
disk and a black hole was first considered by Lemos a
Letelier @7#. This solution and its generalizations have be
studied in some detail in Refs.@18–25#. Recently the stabil-
ity of circular orbits of particles moving around black hole
surrounded by axially symmetric structures have been c
sidered in Ref.@26#. For a recent survey on relativistic grav
tating thin disks, see Ref.@27#.

Except for the pressureless disks, all the other disks h
as source matter with azimuthal pressure~tension! that is
different from the radial pressure~tension!. However, in
some cases these disks can be interpreted as the supe
tion of two counterrotating perfect fluids. A detailed study
the counterrotating model for the case of static thin disks
presented in Ref.@28#. Recently, more realistic models o
thin disks and thin disks with halos made of perfect flui
were considered in Ref.@29#.

In all the disks mentioned above an inverse style meth
was used to solve the Einstein equations. The metric re
senting the disk is estimated and then used to compute
source~energy-momentum tensor!. This method was named
by Synge theg method@30# in contrast to thet method or
direct method in which the source is given and the Einst
equations are solved. Thet method has been used to genera
disks by the Jena group@31–37#. Essentially, they are ob
tained by solving a Riemann-Hilbert problem. These so
tions are highly nontrivial, but they deserve special attent
because of their clear physical meaning.

In the solutions obtained by theg method the well-known
‘‘displace, cut, and reflect’’ method is used. The idea of t
method is simple. Given a solution of the vacuum Einst
equations, a cut is made above all singularities or sour
The identification of this solution with its mirror imag
©2004 The American Physical Society13-1
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G. A. GONZÁLEZ AND P. S. LETELIER PHYSICAL REVIEW D69, 044013 ~2004!
yields relativistic models of disks. In general, these disks
of infinite extension and finite mass.

The aim of this paper is to consider disks beyond the t
disk limit to add a new degree of reality to these geome
models of galaxies. Even though in first approximation
galactic disks can be considered to be very thin, e.g., in
galaxy the radius of the disk is 10 kpc and its thickness i
kpc. In a more realistic model the thickness of the disk ne
to be considered. Also it is well known in fluid mechani
that the addition of a new dimension can make dram
changes in the dynamics of the fluid. In principle, this n
dimension will also change the dynamical properties of
disk source, e.g., its stability.

In this paper we generalize the displace, cut, and refl
method in order to obtain thick disk models from vacuu
solutions of Einstein equations. We shall replace the surf
of discontinuity of the metric derivatives with a thick shell
such a way that the matter content of the disk will be d
scribed by continuous functions with continuous first deriv
tives. This generalization can be named the ‘‘displace,
fill , and reflect’’ method. The disks obtained with th
method, in general, will be of infinite extension and fin
mass. Also, as in the case of thin disks, the matter that fo
the thick disks will not obey simple equations of state and
some regions of the disk the pressure can change sign g
a rise to tensions, although the energy condition will be f
filled. The models of thick disks presented can be conside
as generalizations of models of thin disks studied in Re
@17# and @29#.

The article is structured as follows. In Sec. II we prese
in some detail, the main idea of the displace, cut,fill , and
reflect method in Newtonian gravity. The method is th
applied, in Sec. III, to construct relativistic thick disks
Weyl coordinates. We also study the general expression
the energy-momentum tensor of the disks. The metho
illustrated by taking two simple Weyl solutions that lead
thick disks, in agreement with all the energy conditions.
Sec. IV we apply the method to the Schwarzschild solut
in isotropic cylindrical coordinates. The disk obtained a
satisfies all the energy conditions; this disk has equal
muthal and radial pressures and different vertical press
Finally, in Sec. V we summarize our main results.

II. NEWTONIAN THICK DISKS

The Newtonian gravitational potential of a thin disk c
be obtained by a simple procedure, the displace, cut,
reflect method, of Kuzmin@38#. The method can be divide
in the following steps: First, choose a surface that divides
usual space in two parts: one with no singularities or sour
and the other with the sources. Second, disregard the pa
the space with singularities. Third, use the surface to m
an inversion of the nonsingular part of the space. The re
will be a space with a singularity that is a delta function w
support onz50. This procedure is depicted in Fig. 1.

In order to obtain a thick disk we need to modify th
above procedure. We essentially need to replace the su
of discontinuity with a thick shell in such a way that th
matter content of the disk be described by continuous fu
04401
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tions. Now this method has an additional step and can
named displace, cut,fill , and reflect. After we disregard th
part of the space with singularities, we put a thick shell b
low the surface. Then we use the bottom surface of the s
to make the inversion. The procedure is illustrated in Fig

Mathematically the method is equivalent to making t
transformationz→h(z)1b, whereb is a constant andh(z)
is an even function ofz. In Newtonian gravity, the potentia
F(r ,z) is a solution of the Laplace equation

¹2F5F ,rr 1
F ,r

r
1F ,zz50, ~1!

where (r ,w,z) are the usual cylindrical coordinates. After w
make the transformationz→h(z)1b, the above equation
leads to

¹2F5h9F ,h1@~h8!221#F ,hh , ~2!

where primes indicate differentiation with respect toz.
For the case of thin disks we takeh(z)5uzu. Note that

]zuzu52u(z)21 and]zu(z)5d(z) whereu(z) is the Heave-
side function andd(z) is the usual Dirac distribution. By
using Eq.~2!, the Poisson equation leads to a mass den
given by

2pGr~r ,z!5F ,hd~z!. ~3!

We have a surface distribution of matter located in the pla
z50. In Fig. 3, with dashed lines, we ploth(z) and its
derivatives.

FIG. 1. Construction of a thin disk by the displace, cut, a
reflect method from the gravitational field of a mass point. In~a! the
space with a singularity is displaced and cut by a plane~dashed
line!. In ~b! the part with singularities is disregarded and the up
part is reflected on the plane.

FIG. 2. Construction of a thick disk by the displace, cut, fill, a
reflect method. In~a!, after disregarding the part with singularitie
we put a thick shell below the plane. In~b!, we reflect the resultan
configuration on the bottom surface of the shell.
3-2
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FIG. 3. The functionh(z) and its derivatives, for thin disks~dashed line! and thick disks~solid line!. In ~a! we plot h(z), in ~b! h8(z),
and in ~c! h9(z).
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For the case of thick disks the functionh(z) must be
selected in such a way thatF and its first derivatives are
continuous across the planez50. Let us take a function
h(z) defined as

h~z!55
z2a/2, z>a,

z2/2a, 2a<z<a,

2z2a/2, z<2a.

~4!

Hence, by taking the functionh(z) defined above we can
generate disks of thickness 2a located in the region2a<z
<a. In Fig. 3 we ploth(z) and its derivatives~solid lines!.

When uzu>a the functionh(z) is a linear function ofz
such thath8(z)51. Hence, its second derivative is zer
Then the mass density vanishes outside the disk. Since
first derivative is continuous atuzu5a ~see Fig. 3! and the
second derivative is piecewise constant, the mass densitr,
will be well defined inside the disk,

4pGa2r~r ,z!5aF ,h1~z22a2!F ,hh , ~5!

for uzu<a andr50 for uzu.a.
As a simple example we can consider the usual poten

for a mass point, written in cylindrical coordinates as

F52
Gm

Ar 21z2
. ~6!

By performing the transformationz→h(z)1b in the previ-
ous potential, we obtain the mass densities

r~r ,z!5
m b d~z!

2p~r 21b2!3/2
, ~7!

for a thin disk~Kuzmin-Toomre disk@38,39#!, and

r~r ,z!5
m@3z212a~b2a!#

8pa2R3
1

3m~a22z2!~z212ab!2

16pa4R5
,

~8!

where R25r 21(h1b)2 for a thick disk. Whenb>a, the
mass density will be positive everywhere.
04401
he

al

The functionh(z) presented in Eq.~4! is the simplest
function that has the desired properties. The part of the fu
tion in the domainuzu<a can be changed by superposition
even functions ofz. In uzu5a this new function needs to b
matched continuously with linear functions ofz such that
h8(z)51, as in Eq.~4!. In this case the mass density ca
depend on the variablez in a more general way.

It is instructive to obtain the surface thin disk density~say
s) associated with Eq.~7!,

s5
mb

2p~r 21b2!3/2
, ~9!

as a limit of the thick disk volume density~8!. To obtain the
surface density of the thin disk from the volume density~7!
we first set

S52ar~r ,z!. ~10!

Now to perform the thin disk limit we setz5aj and a
5bj (a andb artitrary constants! in S and we take the limit
limj→0S. This limit is just Eq.~9!.

III. RELATIVISTIC THICK DISKS IN WEYL
COORDINATES

When the matter is absent, the metric for a static axia
symmetric spacetime can be cast without losing generalit

ds252e2Fdt21e22F@r 2dw21e2L~dr21dz2!#, ~11!

whereF andL are functions ofr andz only. The ranges of
the coordinates (w,r ,z) are the usual for cylindrical coordi
nates ~Weyl coordinates! and 2`<t,`. The Einstein
vacuum equations for this metric yield the Weyl equatio
@40,41#:

F ,rr 1
F ,r

r
1F ,zz50, ~12a!

L ,r5r ~F ,r
2 2F ,z

2 !, ~12b!

L ,z52rF ,rF ,z . ~12c!
3-3
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From a solution of Einstein vacuum equations cor
sponding to a Weyl metric~11!, we can construct a thick dis
model by means of the displace, cut, fill, and reflect meth
using the transformationz→h(z)1b, with h(z) given by
Eq. ~4!. The energy-momentum tensor of the disk can
computed using the Einstein equations in the matter, wri
as

Tab5Rab2
1

2
gabR, ~13!

in units such thatc58pG51.
By using the Einstein equations~12!, the nonzero compo

nents ofTa
b are

Tt
t5

e2(F2L)

a2
@a~L ,h22F ,h!

1~z22a2!~F ,h
2 22F ,hh1L ,hh!#, ~14a!

Tw
w5

e2(F2L)

a2
@aL ,h1~z22a2!~F ,h

2 1L ,hh!#,

~14b!

Tr
r5

e2(F2L)

a2
~z22a2!F ,h

2 , ~14c!

Tz
z5

e2(F2L)

a2
~a22z2!F ,h

2 , ~14d!

valid for the region2a<z<a. Outside this region we hav
Ta

b50.
For the above expressions we can see that the radial s

Tr
r is negative~we have radial tension!. On the other hand

sinceTz
z52Tr

r , we have vertical pressure. Defining the o
thonormal tetrad$Vb,Xb,Yb,Zb%, where

Va5e2F ~1,0,0,0!, ~15a!

Xa5
eF

r
~0,1,0,0!, ~15b!

Ya5eF2L~0,0,1,0!, ~15c!

Za5eF2L~0,0,0,1!, ~15d!

we can cast the energy-momentum tensor in its canon
form

Tab5eVaVb1pwXaXb1prYaYb1pzZaZb . ~16!

Heree52Tt
t is the energy density,pw5Tw

w is the azimuthal
stress,pr5Tr

r52Tz
z is the radial tension, andpz5Tz

z is the
vertical pressure.

From Eq.~14! we get the ‘‘effective Newtonian’’ density
r5e1pw1pr1pz5e1pw ,
04401
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2e2(f2L)

a2
@aF ,h1~z22a2!F ,hh#. ~17!

The strong energy condition requires thatr>0, whereas the
weak energy condition imposes the conditione>0. The
dominant energy condition is equivalent requiringupw /eu
<1, upr /eu<1, andupz /eu<1; see for instance, Ref.@42#.
One can obtain the quantities associated with a general
tivistic thin disk from the corresponding quantities associa
with the thick disk using the same limit procedure describ
in the Newtonian disk case.

A. Thick disks from the Chazy-Curzon metric

As a first example we apply the displace, cut, fill, a
reflect method to obtain thick disks using the Chazy-Curz
solution @43,44#, written in Weyl coordinates as

F52
m

R
, ~18a!

L52
m2r 2

2R4
, ~18b!

where R25r 21(h1b)2, m andb are positive constants, an
h(z) is given by Eq.~4!.

Now we rescale the variables and the parameters in te
of the disk thickness,a. We setr 5ar̃, z5az̃, R5aR̃, b

5ab̃, andm5am̃. From Eqs.~14! and ~17!, we obtain

r̃5
m̃e2(F2L)

2R̃5
$2@3z̃212~ b̃21!#R̃213~12 z̃2!~ z̃212b̃!2%,

~19a!

ẽ5
m̃e2(F2L)

4R̃8
$4@3z̃212~ b̃21!#~R̃32m̃r̃ 2!R̃2

1@6~R̃322m̃r̃ 2!1m̃R̃2#~12 z̃2!~ z̃212b̃!2%,

~19b!

p̃w5
m̃2e2(F2L)

4R̃8
„4r̃ 2$@3z̃212~ b̃21!#R̃2

13~12 z̃2!~ z̃212b̃!2%1~ z̃221!~ z̃212b̃!2R̃2
…,

~19c!

p̃r5
m̃2e2(F2L)

4R̃6
@~ z̃221!~ z̃212b̃!2#, ~19d!

p̃z5
m̃2e2(F2L)

4R̃6
@~12 z̃2!~ z̃212b̃!2#, ~19e!

wherer̃5a2r, ẽ5a2e and p̃i5a2pi .
3-4
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FIG. 4. For a thick disk obtained from the Chazy-Curzon solution withm̃51 andb̃52 we plot~a! the dimensionless Newtonian densi

r̃ and ~b! the dimensionless energy densityẽ, as functions ofr̃ and z̃.
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Equation~19a! and the conditionb̃>1 imply r.0. Then,
whenb̃>1 the strong energy condition is satisfied. From E
~19b! we conclude thate>0 whenever R˜ 3>2m̃r̃ 2 and
b̃>1. From the definition ofR we conclude that in order to
havee>0 everywhere, we need

0<m̃<
A3b̃

2
,

and b̃>1.
The behavior of the densities is better illustrated grap

cally. In order to have a disk in agreement with the weak a
strong energy conditions, we takem̃51 andb̃52. In Fig. 4
we plot the effective Newtonian density and the energy d
sity in units ofa2, r̃, andẽ, as functions ofr̃ andz̃. We can
see that the densities have a maximum at the center o
z50 plane. Then the densities decrease monotonicallyr
increases and also the densities decrease forz→6a. We see
that r ande have similar magnitudes.

The azimuthal stress, as we can see from Eq.~19c!, is
negative at the center of the disk (r 50), whereas it is posi-
tive for large values ofr. The boundary between the regio
of negative stress and positive stress is the surface

f ~r ,z!5
4R8e2(L2F)

m2a2
p̃w50, ~20!

with p̃w given by Eq.~19c!.
04401
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The behavior of the stresses is also better illustra
graphically. In Fig. 5 we plot the dimensionless azimuth

stressp̃w and vertical pressurep̃z , as functions ofr̃ and z̃.

The radial pressure is given bypr52pz . Again we setm̃

51 andb̃52. The azimuthal stress is negative at the cen
region of the disk, then increases to have a positive ma
mum on thez50 plane, for a value ofr'1.5a. Finally, it
decreases monotonically for increasingr and also forz→
6a. The behavior of the vertical pressure is like that of t
densities, with a maximum at the center of thez50 plane
and then it monotonically decreases for increasingr. Also,
pz50 for z56a. From Figs. 4 and 5 we can also see th
the magnitude of the stresses is about a tenth of the ma
tude of the densities. We have

Upw

e U<0.1,

Upr

e U5Upz

e U<0.1,

and so the disks are also in agreement with the domin
energy condition. Thin disks based on the Chazy-Curz
metric were studied in Ref.@8#.
re
FIG. 5. For a thick disk obtained from the Chazy-Curzon solution withm̃51 andb̃52 we plot~a! the dimensionless azimuthal pressu

p̃w and ~b! the dimensionless vertical pressurep̃z .
3-5
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B. Thick disks from the Zipoy-Voorhees metric

As a second example we take the Weyl gamma me
also known as Zipoy-Voorhees solution@45,46#, that in Weyl
coordinates can be cast as@47#

F5
m

2k
lnFR11R222k

R11R212kG , ~21a!

L5
m2

2k2
lnF ~R11R2!224k2

4R1R2
G , ~21b!

where R1
25r 21(h1b1k)2, R2

25r 21(h1b2k)2, m, b, and
k are positive constants, andh(z) is given by Eq.~4!. When
k5m this solution leads to the Schwarzschild metric a
when k→0 to the Chazy-Curzon solution of the previo
section.

By using Eqs.~14! and ~17! we obtain, in terms of the
dimensionless variables used in the preceding section,

r̃5
m̃e2(F2L)

2k̃R̃1
3R̃2

3 $2~R̃12R̃2!R̃1
2R̃2

2

1~12 z̃2!@~ z̃212b̃!~R̃1
32R̃2

3!22k̃~R̃1
31R̃2

3!#%,

~22a!

ẽ5 r̃F12
2m̃r̃ 2~R̃11R̃2!

R̃1
2R̃2

2@~R̃11R̃2!224k̃2#
G

1
m̃2e2(F2L)~12 z̃2!~R̃12R̃2!

4k̃2R̃1
4R̃2

4 @~R̃12R̃2!R̃1
2R̃2

2

22r̃ 2~R̃1
32R̃2

3!#, ~22b!

p̃w5
2m̃r̃ r̃ 2~R̃11R̃2!

R̃1
2R̃2

2@~R̃11R̃2!224k̃2#

1
m̃2e2(F2L)~ z̃221!~R̃12R̃2!

4k̃2R̃1
4R̃2

4 @~R̃12R̃2!R̃1
2R̃2

2

22r̃ 2~R̃1
32R̃2

3!#, ~22c!

p̃r5
m̃2e2(F2L)

R̃1
2R̃2

2 F ~ z̃221!~ z̃212b̃!2

~R̃11R̃2!2 G , ~22d!

p̃z5
m̃2e2(F2L)

R̃1
2R̃2

2 F ~12 z̃2!~ z̃212b̃!2

~R̃11R̃2!2 G , ~22e!

wherek5ak̃, R15aR̃1, and R25aR̃2.
From Eq.~22a! and the condition

A[
k̃~R̃1

31R̃2
3!

~R̃12R̃2!R̃1
2R̃2

2
<1,
04401
c,

we haver>0, i.e., the strong energy condition is satisfie
Also from R̃1

22R̃2
254k̃(h̃1b̃), with h̃( z̃)5 z̃2/2, we can

show that

A5
~R̃11R̃2!~R̃1

31R̃2
3!

4~ h̃1b̃!R̃1
2R̃2

2

,
R̃1

2

~ h̃1b̃!R̃2
2

5
R̃2

214k̃~ h̃1b̃!

~ h̃1b̃!R̃2
2

.

Also, h̃1b̃>b̃ and R̃2>b̃2 k̃ give us

A,
~ b̃2 k̃!214k̃b̃

b̃~ b̃2 k̃!2
.

Then the conditionA<1 can be cast as

~ b̃1 k̃!2,b̃~ b̃2 k̃!2, ~23!

which also leads tob̃Þ k̃. This last condition ensures th
nonsingular behavior of the energy densitye and the azi-
muthal stresspw .

From Eq.~22b! and r 50 we havee.0. Whenz̃51 the
condition

B[
2m̃r̃ 2~R̃11R̃2!

R̃1
2R̃2

2@~R̃11R̃2!224k̃2#
<1

gives use.0. Since R̃1.R̃2 , R̃11R̃2>2b̃, R̃2. r̃ , and R̃1

>b̃1 k̃ we have

B,
m̃

~ b̃22 k̃2!~ b̃1 k̃!
.

Then the conditionB<1 leads to

0,m̃,~ b̃22 k̃2!~ b̃1 k̃!. ~24!

This relation also yieldsb̃. k̃ as a condition to havem.0.
For any other value ofr andz is not easy to obtain con

straints over the parametersk̃, b̃, andm̃ in order to havee
.0. The analysis is better done graphically. By consider
different values ofk̃ and b̃ that fulfill the condition~23! we
find thate.0 everywhere in the disks only if we take form̃
a value less than a tenth of the upper limit provided by
condition ~24!. As an example, in Fig. 6 we plot the dimen
sionless densitiesr̃ andẽ for a disk withm̃53, b̃53.5, and
k̃51. We can see that, as in the Chazy-Curzon disk,
density has a maximum at the center of thez50 plane and
then it decreases monotonically asr increases and also fo
z→6a. Also, r ande have similar magnitudes.

The behavior of the stresses is also similar to that p
sented in the Chazy-Curzon disk. Again, it is better to do
graphical presentation. In Fig. 7 we plot the dimensionl
azimuthal stressp̃w and the vertical pressurep̃z for the disk
3-6
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FIG. 6. For a thick disk obtained from the Zipoy-Voorhees solution withm̃53, b̃53.5 andk̃51 we plot ~a! the effective Newtonian

densityr̃ and ~b! the energy densityẽ.
tiv
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with m̃53, b̃53.5, andk̃51. Again we havepr52pz . As
with the Chazy-Curzon disk, the azimuthal stress is nega
at the central region of the disk, then increases to hav
positive maximum at thez50 plane, for a value ofr
'2.5a, and finally decreases monotonically. The behavior
the vertical pressure is like that of the densities, with a ma
mum at the center of thez50 plane, and then it monotoni
cally decreases for increasingr. Also, pw50 for z56a.
From Figs. 6 and 7 we have

Upw

e U,0.2,

Upr

e U5Upz

e U,0.1,

and so the disks are also in agreement with the domin
energy condition. Thin disks based in the Zipoy-Voorhe
metric were considered in Ref.@8#.

IV. THICK DISKS FROM THE SCHWARZSCHILD
METRIC IN ISOTROPIC COORDINATES

For a static spherically symmetric spacetime the metric
isotropic spherical coordinates (t,R,u,w) can be cast as

ds252e2Fdt21e2L@dR21R2~du21sin2udw2!#,
~25!
04401
e
a

f
i-

nt
s

n

whereF and L are functions ofR only. In isotropic cylin-
drical coordinates (t,w,r ,z) the metric~25! takes the form

ds252e2Fdt21e2L@r 2dw21dr21dz2#, ~26!

where nowF andL depend onr andz.
We will now apply the displace, cut, fill, and reflec

method to the Schwarzschild solution in isotropic coor
nates,

F5 lnF2R2m

2R1mG , ~27a!

L5 lnF11
m

2RG2

, ~27b!

with m a positive constant and R25r 21z2. Now we set R2

5r 21(h1b)2, whereb is a positive constant andh(z) is
given by Eq.~4!.

From the Einstein equations~13! and the orthonormal tet
rad $Va,Xa,Ya,Za%, where

Va5e2F~1,0,0,0!, ~28a!

Xa5
eF

r
~0,1,0,0!, ~28b!

Ya5e2L~0,0,1,0!, ~28c!

Za5e2L~0,0,0,1!, ~28d!
FIG. 7. For a thick disk obtained from the Zipoy-Voorhees solution withm̃53, b̃53.5 andk̃51 we plot~a! the azimuthal stressp̃w and

~b! the vertical pressurep̃z .
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FIG. 8. For a thick disk obtained from the Schwarzschild isotropic solution withm̃5b̃51, we plot~a! the effective Newtonian density

r̃ and ~b! the energy densityẽ.
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we find that the energy-momentum tensor of the disk can
written as

Tab5eVaVb1pwXaXb1prYaYb1pzZaZb . ~29!

Heree52Tt
t is the energy density,pw5Tw

w is the azimuthal
stress, which is equal to the radial stresspr5Tr

r , and pz

5Tz
z is the vertical stress. The effective Newtonian density

given byr5e12pr1pz5e12pw1pz .
From Eq. ~27! we obtain, using the dimensionless va

ables previously defined,

r̃5
3m̃R̃$2@3z̃212~ b̃21!#R̃213~ z̃212b̃!2~12 z̃2!%

~2R̃2m̃!~2R̃1m̃!5
,

~30a!

ẽ5
3m̃$2@3z̃212~ b̃21!#R̃213~ z̃212b̃!2~12 z̃2!%

2~2R̃1m̃!5
,

~30b!

p̃w5
16m̃2$@3z̃212~ b̃21!#R̃21~ z̃212b̃!2~12 z̃2!%

~2R̃2m̃!~2R̃1m̃!5
,

~30c!

p̃r5
16m̃2$@3z̃212~ b̃21!#R̃21~ z̃212b̃!2~12 z̃2!%

~2R̃2m̃!~2R̃1m̃!5
,

~30d!
04401
e

s

p̃z5
16m̃2~ z̃212b̃!2~12 z̃2!

~2R̃2m̃!~2R̃1m̃!5
. ~30e!

From Eq. ~30b! and b̃.1 we havee.0. On the other
hand, from Eq.~30a! and 2R̃.m̃ we haver.0. Since R̃
>b̃, this last condition is equivalent to 2b̃.m̃. Therefore,
when b̃>1 and 0,m̃,2b̃ we will have disks in agreemen
with the weak and strong energy conditions. Also, these v
ues ofm̃ assure the nonsingular behavior ofr, pw , pr , and
pz . We also havepw5pr.0 and pz.0. The vertical and
horizontal stress are then pressures.

As in the preceding section, we perform a graphic
analysis of the solution. In Fig. 8 we plotr̃ andẽ for a thick
disk obtained from the Schwarzschild isotropic solution w
m̃5b̃51. The horizontal and vertical pressures are plot
in Fig. 9. All the four quantities have a similar behavior, wi
a maximum at the center of thez50 plane, and then it
monotonically decreases with increasingr andz. The relative
magnitudes of the densities and pressures are such thr
>e>pw5pr'pz . We have

Upw

e U5Upr

e U'Upz

e U,0.4,

and so the disks are in agreement with all the energy co
tions. Thin disks based on the Schwarzschild solution in i
tropic coordinates were studied in Ref.@29#, whereas thin
FIG. 9. For a thick disk obtained from the Schwarzschild isotropic solution withm̃5b̃51, we plot~a! the horizontal pressurep̃w5 p̃r and

~b! the vertical pressurep̃z .
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EXACT GENERAL RELATIVISTIC THICK DISKS PHYSICAL REVIEW D69, 044013 ~2004!
disks based in the Schwarzschild metric in Weyl coordina
were studied in Ref.@8#. For the disks in isotropic coordi
nates we have matter with radial pressure equal to the
muthal pressure~isotropic matter! and for the disks in Weyl
coordinates we have zero radial pressure.

V. DISCUSSION

We presented a method to obtain exact general relativ
thick disks as a generalization of the displace, cut, and re
method commonly used to obtain Newtonian and relativis
thin disks. The generalization was done by means of
transformationz→h(z)1b, whereh(z) is an even function
of z andb is a positive constant. The functionh(z) must be
selected in such a way that the metric tensor and its
derivatives will be continuous across the planez50.

All the cases considered lead to thick disks with simi
behavior of the energy and Newtonian effective densitie
maximum at the center of the central plane of the disks,
z50 plane, and then monotonously decreasing for increa
r andz.

We found that when the method is applied to vacu
Weyl spacetimes, the thick disks present radial tension
c.

.

v.

04401
s

zi-

ic
ct
c
e

st

r
a
e
g

d

vertical pressure. The azimuthal stress is negative at the
tral region of the disks, then has a positive maximum, a
finally decreases monotonically for large values ofr and z
→6a, where 2a is the thickness of the disk. The disk
obtained are in full agreement with all the energy conditio

On the other hand, when the method is applied to
Schwarzschild isotropic metric all the stresses are press
and have a behavior like the densities. The disks obtained
also in full agreement with all the energy conditions.

We plan to extend the models of thick disks presen
along these lines by considering more elaborate functi
h(z) and by the incorporation of new properties like rotatio
either electric or magnetic fields or both. Also, we belie
that the study of stability in these disks can produce so
nontrivial results.
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