10,487 research outputs found

    Outflows and Massive Stars in the protocluster IRAS 05358+3543

    Full text link
    We present new near-IR H2, CO J=2-1, and CO J = 3-2 observations to study outflows in the massive star forming region IRAS 05358+3543. The Canada-France-Hawaii Telescope H2 images and James Clerk Maxwell Telescope CO data cubes of the IRAS 05358 region reveal several new outflows, most of which emerge from the dense cluster of sub-mm cores associated with the Sh 2-233IR NE cluster to the northeast of IRAS 05358. We used Apache Point Observatory (APO) JHK spectra to determine line of sight velocities of the outflowing material. Analysis of archival VLA cm continuum data and previously published VLBI observations reveal a massive star binary as a probable source of one or two of the outflows. We have identified probable sources for 6 outflows and candidate counterflows for 7 out of a total of 11 seen to be originating from the IRAS 05358 clusters. We classify the clumps within Sh 2-233IR NE as an early protocluster and Sh 2-233IR SW as a young cluster, and conclude that the outflow energy injection rate approximately matches the turbulent decay rate in Sh 2-233IR NE.Comment: 15 figures, 42 pages, accepted for publication in the Astrophysical Journal. Full size figures are included at http://casa.colorado.edu/~ginsbura/iras05358.htm. Data can be accessed from figshare: http://figshare.com/articles/IRAS_05358_3543_Data_Cubes/80631

    The Discovery of a Debris Disk Around the DAV White Dwarf PG 1541+651

    Full text link
    To search for circumstellar disks around evolved stars, we targeted roughly 100 DA white dwarfs from the Palomar Green survey with the Peters Automated Infrared Imaging Telescope (PAIRITEL). Here we report the discovery of a debris disk around one of these targets, the pulsating white dwarf PG 1541+651 (KX Draconis, hereafter PG1541). We detect a significant flux excess around PG1541 in the K-band. Follow-up near-infrared spectroscopic observations obtained at the NASA Infrared Telescope Facility (IRTF) and photometric observations with the warm Spitzer Space Telescope confirm the presence of a warm debris disk within 0.13-0.36 Rsun (11-32x the stellar radius) at an inclination angle of 60deg. At Teff = 11880 K, PG1541 is almost a twin of the DAV white dwarf G29-38, which also hosts a debris disk. All previously known dusty white dwarfs are of the DAZ/DBZ spectral type due to accretion of metals from the disk. High-resolution optical spectroscopy is needed to search for metal absorption lines in PG1541 and to constrain the accretion rate from the disk. PG1541 is only 55 pc away from the Sun and the discovery of its disk in our survey demonstrates that our knowledge of the nearby dusty white dwarf population is far from complete.Comment: MNRAS Letters, in pres

    CfAIR2: Near Infrared Light Curves of 94 Type Ia Supernovae

    Get PDF
    CfAIR2 is a large homogeneously reduced set of near-infrared (NIR) light curves for Type Ia supernovae (SN Ia) obtained with the 1.3m Peters Automated InfraRed Imaging TELescope (PAIRITEL). This data set includes 4607 measurements of 94 SN Ia and 4 additional SN Iax observed from 2005-2011 at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes JHKs photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia in the nearby universe, with a median redshift of z~0.021 for the normal SN Ia. CfAIR2 data span the range from -13 days to +127 days from B-band maximum. More than half of the light curves begin before the time of maximum and the coverage typically contains ~13-18 epochs of observation, depending on the filter. We present extensive tests that verify the fidelity of the CfAIR2 data pipeline, including comparison to the excellent data of the Carnegie Supernova Project. CfAIR2 contributes to a firm local anchor for supernova cosmology studies in the NIR. Because SN Ia are more nearly standard candles in the NIR and are less vulnerable to the vexing problems of extinction by dust, CfAIR2 will help the supernova cosmology community develop more precise and accurate extragalactic distance probes to improve our knowledge of cosmological parameters, including dark energy and its potential time variation.Comment: 31 pages, 15 figures, 10 tables. Accepted to ApJS. v2 modified to more closely match journal versio

    Critical Dynamics of Gelation

    Full text link
    Shear relaxation and dynamic density fluctuations are studied within a Rouse model, generalized to include the effects of permanent random crosslinks. We derive an exact correspondence between the static shear viscosity and the resistance of a random resistor network. This relation allows us to compute the static shear viscosity exactly for uncorrelated crosslinks. For more general percolation models, which are amenable to a scaling description, it yields the scaling relation k=ϕ−β k=\phi-\beta for the critical exponent of the shear viscosity. Here β\beta is the thermal exponent for the gel fraction and ϕ\phi is the crossover exponent of the resistor network. The results on the shear viscosity are also used in deriving upper and lower bounds on the incoherent scattering function in the long-time limit, thereby corroborating previous results.Comment: 34 pages, 2 figures (revtex, amssymb); revised version (minor changes

    Mapping cortical activations underlying covert and overt language production using high-density diffuse optical tomography

    Get PDF
    Gold standard neuroimaging modalities such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and more recently electrocorticography (ECoG) have provided profound insights regarding the neural mechanisms underlying the processing of language, but they are limited in applications involving naturalistic language production especially in developing brains, during face-to-face dialogues, or as a brain-computer interface. High-density diffuse optical tomography (HD-DOT) provides high-fidelity mapping of human brain function with comparable spatial resolution to that of fMRI but in a silent and open scanning environment similar to real-life social scenarios. Therefore, HD-DOT has potential to be used in naturalistic settings where other neuroimaging modalities are limited. While HD-DOT has been previously validated against fMRI for mapping the neural correlates underlying language comprehension and covert (i.e., silent ) language production, HD-DOT has not yet been established for mapping the cortical responses to overt (i.e., out loud ) language production. In this study, we assessed the brain regions supporting a simple hierarchy of language tasks: silent reading of single words, covert production of verbs, and overt production of verbs in normal hearing right-handed native English speakers (n = 33). First, we found that HD-DOT brain mapping is resilient to movement associated with overt speaking. Second, we observed that HD-DOT is sensitive to key activations and deactivations in brain function underlying the perception and naturalistic production of language. Specifically, statistically significant results were observed that show recruitment of regions in occipital, temporal, motor, and prefrontal cortices across all three tasks after performing stringent cluster-extent based thresholding. Our findings lay the foundation for future HD-DOT studies of imaging naturalistic language comprehension and production during real-life social interactions and for broader applications such as presurgical language assessment and brain-machine interfaces

    Negotiating the inhuman: Bakhtin, materiality and the instrumentalization of climate change

    Get PDF
    The article argues that the work of literary theorist Mikhail M. Bakhtin presents a starting point for thinking about the instrumentalization of climate change. Bakhtin’s conceptualization of human–world relationships, encapsulated in the concept of ‘cosmic terror’, places a strong focus on our perception of the ‘inhuman’. Suggesting a link between the perceived alienness and instability of the world and in the exploitation of the resulting fear of change by political and religious forces, Bakhtin asserts that the latter can only be resisted if our desire for a false stability in the world is overcome. The key to this overcoming of fear, for him, lies in recognizing and confronting the worldly relations of the human body. This consciousness represents the beginning of one’s ‘deautomatization’ from following established patterns of reactions to predicted or real changes. In the vein of several theorists and artists of his time who explored similar ‘deautomatization’ strategies – examples include Shklovsky’s ‘ostranenie’, Brecht’s ‘Verfremdung’, Artaud’s emotional ‘cruelty’ and Bataille’s ‘base materialism’ – Bakhtin proposes a more playful and widely accessible experimentation to deconstruct our ‘habitual picture of the world’. Experimentation is envisioned to take place across the material and the textual to increase possibilities for action. Through engaging with Bakhtin’s ideas, this article seeks to draw attention to relations between the imagination of the world and political agency, and the need to include these relations in our own experiments with creating climate change awareness

    Rootstock Effects on Scion Phenotypes in a ‘Chambourcin’ Experimental Vineyard

    Get PDF
    Understanding how root systems modulate shoot system phenotypes is a fundamental question in plant biology and will be useful in developing resilient agricultural crops. Grafting is a common horticultural practice that joins the roots (rootstock) of one plant to the shoot (scion) of another, providing an excellent method for investigating how these two organ systems affect each other. In this study, we used the French-American hybrid grapevine ‘Chambourcin’ (Vitis L.) as a model to explore the rootstock–scion relationship. We examined leaf shape, ion concentrations, and gene expression in ‘Chambourcin’ grown ungrafted as well as grafted to three different rootstocks (‘SO4’, ‘1103P’ and ‘3309C’) across 2 years and three different irrigation treatments. We found that a significant amount of the variation in leaf shape could be explained by the interaction between rootstock and irrigation. For ion concentrations, the primary source of variation identified was the position of a leaf in a shoot, although rootstock and rootstock by irrigation interaction also explained a significant amount of variation for most ions. Lastly, we found rootstock-specific patterns of gene expression in grafted plants when compared to ungrafted vines. Thus, our work reveals the subtle and complex effect of grafting on ‘Chambourcin’ leaf morphology, ionomics, and gene expression

    An SU(3) model for octet baryon and meson fragmentation

    Get PDF
    The production of the octet of baryons and mesons in e^+ e^- collisions is analysed, based on considerations of SU(3) symmetry and a simple model for SU(3) symmetry breaking in fragmentation functions. All fragmentation functions, D_q^h(x, Q^2), describing the fragmentation of quarks into a member of the baryon octet (and similarly for fragmentation into members of the meson octet) are expressed in terms of three SU(3) symmetric functions, \alpha(x, Q^2), \beta(x, Q^2), and \gamma(x, Q^2). With the introduction of an SU(3) breaking parameter, \lambda, the model is successful in describing hadroproduction data at the Z pole. The fragmentation functions are then evolved using leading order evolution equations and good fits to currently available data at 34 GeV and at 161 GeV are obtained.Comment: 24 pages LaTeX file including 11 postscript figure file

    Cosmology with the Highly Redshifted 21cm Line

    Get PDF
    In addition to being a probe of Cosmic Dawn and Epoch of Reionization astrophysics, the 21cm line at z>6z>6 is also a powerful way to constrain cosmology. Its power derives from several unique capabilities. First, the 21cm line is sensitive to energy injections into the intergalactic medium at high redshifts. It also increases the number of measurable modes compared to existing cosmological probes by orders of magnitude. Many of these modes are on smaller scales than are accessible via the CMB, and moreover have the advantage of being firmly in the linear regime (making them easy to model theoretically). Finally, the 21cm line provides access to redshifts prior to the formation of luminous objects. Together, these features of 21cm cosmology at z>6z>6 provide multiple pathways toward precise cosmological constraints. These include the "marginalizing out" of astrophysical effects, the utilization of redshift space distortions, the breaking of CMB degeneracies, the identification of signatures of relative velocities between baryons and dark matter, and the discovery of unexpected signs of physics beyond the Λ\LambdaCDM paradigm at high redshifts.Comment: Science white paper submitted to Decadal 2020 surve
    • …
    corecore