661 research outputs found

    TEM analysis of boride-based ultra-high temperature ceramics

    Get PDF
    Hafnium and zirconium borides are leading candidate materials for use in ultra-high-temperature applications thanks to their excellent combination of physical, mechanical and oxidation resistance properties. It has been shown that the addition of MoSi2 allows the densification without the application of pressure, improves the oxidation resistance and the mechanical properties at high temperatures. Despite the use of this sintering additive for several ultra high temperature ceramics, the densification mechanisms are still unclear and matter of debate. Transmission electron microscopy (TEM) is a powerful tool to explore microstructure at small length scale. A careful literature analysis reveals that neither detailed TEM work nor reports on densification mechanisms are available for this class of materials. In the present work, the microstructure of pressureless sintered ZrB2-MoSi2 and HfB2-MoSi2 composites was analyzed by scanning and transmission electron microscopy in order to disclose the mechanisms leading to densification and to understand the role of MoSi2 during sintering. The formation of solid solutions was observed in ZrB2-MoSi2 system, whilst the solubility of Mo into HfB2 lattice seems to be more limited. For both composites the presence of (TM,Mo)5SiB2, where TM=Hf or Zr, was detected. The formation of secondary phases is analysed and discussed in accordance with thermodynamical calculations and phase diagram

    Microstructure characterization of boride-based ultra-high-temperature ceramics

    Get PDF
    Hafnium and zirconium borides are leading candidate materials for use in ultra-high-temperature applications thanks to their excellent combination of physical, mechanical and oxidation resistance properties. It has been shown that the addition of MoSi2 allows the densification without the application of pressure, improves the oxidation resistance and the mechanical properties at high temperatures. Despite the use of this sintering additive for several ultra high temperature ceramics, the densification mechanisms are still unclear and matter of debate. Transmission electron microscopy (TEM) is a powerful tool to explore microstructure at small length scale. A careful literature analysis reveals that neither detailed TEM work nor any reports on densification mechanism are available for this class of materials. In the present work, the microstructure of HfB2-MoSi2 and ZrB2-MoSi2 composites was analyzed in detail in order to gain an insight into the densification mechanism during pressureless sintering. The formation of solid solutions was observed in ZrB2-MoSi2 system, whilst the solubility of Mo into HfB2 lattice seems to be more limited. For both composites the presence of (TM,Mo)5SiB2, where TM=Hf or Zr, was detected. The formation of secondary phases is analysed and discussed in accordance with thermodynamical calculations and the phase diagram

    Controlled oxygen vacancy induced p-type conductivity in HfO{2-x} thin films

    Full text link
    We have synthesized highly oxygen deficient HfO2x_{2-x} thin films by controlled oxygen engineering using reactive molecular beam epitaxy. Above a threshold value of oxygen vacancies, p-type conductivity sets in with up to 6 times 10^{21} charge carriers per cm3. At the same time, the band-gap is reduced continuously by more than 1 eV. We suggest an oxygen vacancy induced p-type defect band as origin of the observed behavior.Comment: 4 pages, 3 figure

    In situ electric field induced domain evolution in Ba(Zr0.2Ti0.8)O3-0.3(Ba0.7Ca0.3)TiO3ferroelectrics

    Get PDF
    In this work, the lead-free Ba(Zr0.2Ti0.8)O3-0.3(Ba0.7Ca0.3)TiO3piezoelectric ceramic was investigated in situ under an applied electric field by transmission electron microscopy. Significant changes in domain morphology of the studied material have been observed under an applied electric field. During the poling process, the domain configurations disappeared, forming a single-domain state. This multi- to single-domain state transition occurred with the formation of an intermediate nanodomain state. After removing the electric field, domain configurations reappeared. Selected area electron diffraction during electrical poling gave no indication of any structural changes as for example reflection splitting. Rather, a contribution of the extrinsic effect to the piezoelectric response of the Ba(Zr0.2Ti0.8)O3-0.3(Ba0.7Ca0.3)TiO3was found to be dominant.open2

    Cyclic electric field response of morphotropic Bi1/2Na1/2TiO3-BaTiO3 piezoceramics

    Get PDF
    In this study, the evolution of field induced mechanisms in lead-free piezoelectric ceramics (1-x)Bi1/2Na1/2TiO3-xBaTiO(3) with x = 0.06 and 0.07 was investigated by transmission electron microscopy, neutron, and X-ray diffraction. Preliminary investigations revealed a strong degradation of macroscopic electromechanical properties within the first 100 bipolar electric cycles. Therefore, this structural investigation focuses on a comparative diffraction study of freshly prepared, poled, and fatigued specimens. Transmission electron microscopy and neutron diffraction of the initial specimens reveal the coexistence of a rhombohedral and a tetragonal phase with space group R3c and P4bm, respectively. In situ electric field X-ray diffraction reveals a pronounced field induced phase transition from a pseudocubic state to a phase composition of significantly distorted phases upon poling with an external electric field of 4 kV/mm. Although the structures of the two compositions are pseudocubic and almost indistinguishable in the unpoled virgin state, the electric field response shows significant differences depending on composition. For both compositions, the application of an electric field results in a field induced phase transition in the direction of the minority phase. Electric cycling has an opposite effect on the phase composition and results in a decreased phase fraction of the minority phase in the fatigued remanent state at 0 kV/mm. (C) 2015 AIP Publishing LLCopen

    Subamorphous thermal conductivity of crystalline half-Heusler superlattices

    Get PDF
    En publicar-se l'article, l'autor Emigdio Chávez treballa a l'Institut Català de Nanociència i NanotecnologiaThe quest to improve the thermoelectric figure of merit has mainly followed the roadmap of lowering the thermal conductivity while keeping unaltered the power factor of the material. Ideally an electron-crystal phonon-glass system is desired. In this work, we report an extraordinary reduction of the cross-plane thermal conductivity in crystalline (TiNiSn):(HfNiSn) half-Heusler superlattices (SLs). We create SLs with thermal conductivities below the effective amorphous limit, which is kept in a large temperature range (120-300 K). We measured thermal conductivity at room temperature values as low as 0.75 W m⁻¹ K⁻¹, the lowest thermal conductivity value reported so far for half-Heusler compounds. By changing the deposition conditions, we also demonstrate that the thermal conductivity is highly impacted by the way the single segments of the SL grow. These findings show a huge potential for thermoelectric generators where an extraordinary reduction of the thermal conductivity is required but without losing the crystal quality of the syste

    Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. I. Structure and room temperature properties

    Get PDF
    Lead-free piezoelectric ceramics, (1-x-y)Bi0.5Na0.5TiO3-xBaTiO(3)-yK(0.5)Na(0.5)NbO(3) (0.05 <= x <= 0.07 and 0.01 <= y <= 0.03), have been synthesized by a conventional solid state sintering method. The room temperature ferroelectric and piezoelectric properties of these ceramics were studied. Based on the measured properties, the ceramics were categorized into two groups: group I compositions having dominant ferroelectric order and group II compositions displaying mixed ferroelectric and antiferroelectric properties at room temperature. A composition from group II near the boundary between these two groups exhibited a strain as large as similar to 0.45% at an electric field of 8 kV/mm. Polarization in this composition was not stable in that the piezoelectric coefficient d(33) at zero electric field was only about 30 pm/V. The converse piezoelectric response becomes weaker when the composition deviated from the boundary between the groups toward either the ferroelectric or antiferroelectric compositions. These results were rationalized based on a field induced antiferroelectric-ferroelectric phase transition.open12510

    МНОГОФАЗНО-ОДНОФАЗНыЕ РЕВЕРСИВНыЕ ЭЛЕКТРОМАШИННО-ВЕНТИЛЬНыЕ ПРЕОБРАЗОВАТЕЛИ БЕСКОНТАКТНыХ МАШИН ДВОЙНОГО ПИТАНИЯ

    Get PDF
    Розглянуто процеси в багатофазно-однофазних реверсивних електромашинно-вентильних перетворю- вачах безконтактних машин подвійного живлення. Рассмотрены процессы в многофазно-однофазных реверсивных электромашинно-вентильных преобра- зователях бесконтактных машин двойного питания

    Effect of uniaxial stress on ferroelectric behavior of (Bi1/2Na1/2)TiO3-based lead-free piezoelectric ceramics

    Get PDF
    Prior studies have shown that a field-induced ferroelectricity in ceramics with general chemical formula (1-x-y) (Bi1/2 Na1/2) TiO3 -x BaTiO3 -y (K0.5 Na0.5) NbO3 and a very low remanent strain can produce very large piezoelectric strains. Here we show that both the longitudinal and transverse strains gradually change with applied electric fields even during the transition from the nonferroelectric to the ferroelectric state, in contrast to known Pb-containing antiferroelectrics. Hence, the volume change and, in turn, the phase transition can be affected using uniaxial compressive stresses, and the effect on ferroelectricity can thus be assessed. It is found that the 0.94 (Bi1/2 Na1/2) TiO3 -0.05 BaTiO3 -0.01 (K0.5 Na0.5) NbO3 ceramic (largely ferroelectric), with a rhombohedral R3c symmetry, displays large ferroelectric domains, significant ferroelastic deformation, and large remanent electrical polarizations even at a 250 MPa compressive stress. In comparison, the 0.91 (Bi1/2 Na1/2) TiO3 -0.07 BaTiO3 -0.02 (K0.5 Na0.5) NbO3 ceramic (largely nonferroelectric) possesses characteristics of a relaxor ferroelectric ceramic, including a pseudocubic structure, limited ferroelastic deformation, and low remanent polarization. The results are discussed with respect of the proposed antiferroelectric nature of the nonferroelectric state.open291

    Growth of Boron-Rich Nanowires by Chemical Vapor Deposition (CVD)

    Get PDF
    B-rich nanowires are grown on Ni coated oxidized Si(111) substrate using diborane as the gas precursor in a CVD process at 20 torr and 900°C. These nanowires have diameters around 20–100 nanometers and lengths up to microns. Icosahedron B12 is shown to be the basic building unit forming the amorphous B-rich nanowires as characterized by EDAX, XRD, XPS, and Raman spectroscopies. The gas chemistry at low [B₂H₆]/ [N₂] ratio is monitored by the in situ mass spectroscopy, which identified N₂ as an inert carrier gas leading to formation of the B-rich compounds. A nucleation controlled growth mechanism is proposed to explain the rugged nanowire growth of boron. The role of the Ni catalyst in the synthesis of the B-rich nanostructures is also discussed
    corecore