92 research outputs found

    Shear-band arrest and stress overshoots during inhomogeneous flow in a metallic glass

    Get PDF
    At the transition from a static to a dynamic deformation regime of a shear band in bulk metallic glasses, stress transients in terms of overshoots are observed. We interpret this phenomenon with a repeated shear-melting transition and are able to access a characteristic time for a liquidlike to solidlike transition in the shear band as a function of temperature, enabling us to understand why shear bands arrest during inhomogenous serrated flow in bulk metallic glasses

    Ion induced grain rotation - a general phenomenon?

    Get PDF

    Ion-Beam induced grain rotation in nanocrystalline alumina

    Get PDF

    Creation of multiple nanodots by single ions

    Full text link
    In the challenging search for tools that are able to modify surfaces on the nanometer scale, heavy ions with energies of several 10 MeV are becoming more and more attractive. In contrast to slow ions where nuclear stopping is important and the energy is dissipated into a large volume in the crystal, in the high energy regime the stopping is due to electronic excitations only. Because of the extremely local (< 1 nm) energy deposition with densities of up to 10E19 W/cm^2, nanoscaled hillocks can be created under normal incidence. Usually, each nanodot is due to the impact of a single ion and the dots are randomly distributed. We demonstrate that multiple periodically spaced dots separated by a few 10 nanometers can be created by a single ion if the sample is irradiated under grazing angles of incidence. By varying this angle the number of dots can be controlled.Comment: 12 pages, 6 figure

    Molecular dynamics simulations of non-equilibrium systems

    Get PDF
    Peer reviewe

    Vertical Nanowire Transistors with Low Leakage Current

    Get PDF
    A vertical field-effect transistor based on semiconductor nanowires is reported. The fabrication of the device uses a self-supporting flexible nanostructured polymer foil as a template and an electrochemical growth technique for the preparation of the semiconductor. The fabrication process is substantially simpler, and the mechanical robustness is strongly increased as compared to the original device. The channel region of the transistor has a diameter of ∼100 nm and a length of ∼50 nm. Operation in the hole depletion mode allows a change of the transfer conductance by ∼50% when the gate voltages is changed in the range ∓1 V. The gate leakage current is ∼600 fA per transistor. The overall layout is suitable for optical pixel control on large-area flexible substrates

    Surface modification of ZnO nanorods with Hamilton receptors

    No full text
    A new prototype of a Hamilton receptor suitable for the functionalization of inorganic nanoparticles was synthesized and characterized. The hydrogen bonding receptor was coupled to a catechol moiety, which served as anchor group for the functionalization of metal oxides, in particular zinc oxide. Synthesized zinc oxide nanorods [ZnO] were used for surface functionalization. The wet-chemical functionalization procedure towards monolayer-grafted particles [ZnO-HR] is described and a detailed characterization study is presented. In addition, the detection of specific cyanurate molecules is demonstrated. The hybrid structures [ZnO-HR-CA] were stable towards agglomeration and exhibited enhanced dispersability in apolar solvents. This observation, in combination with several spectroscopic experiments gave evidence of the highly directional supramolecular recognition at the surface of nanoparticles. © 2015 by the authors; licensee MDPI, Basel, Switzerland
    corecore