27 research outputs found

    FCLAB:An EEGLAB module for performing functional connectivity analysis on single-subject EEG data

    Get PDF
    Functional connectivity (FC) analysis constitutes a fundamental neuroscientific approach that has been extensively used for the investigation of brain's connectivity and activation patterns. To that end, several software tools have been developed. This paper presents FCLAB, the only EEGLAB-based plugin, which is able to work with EEG signals in order to estimate and visualize brain functional connectivity networks based on a variety of similarity measures as well as run a complete graph analysis procedure followed by a detailed visualization of the ensuing local and global measures distribution. FCLAB entails optimization procedures for the implementation of the connectivity structures and is the result of long-term research in EEG functional connectivity. The computed functional connectivity measures have been carefully selected to reflect the state-of-art in the field. Future work focuses on extending the platform for multi-subject analysis in order to enable the implementation of statistical analysis tools

    Resting-State Functional Connectivity and Network Analysis of Cerebellum with Respect to Crystallized IQ and Gender

    Get PDF
    During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research investigating cerebellum's relationship with cognitive processes. In this study, the network of cerebellum was analyzed in order to investigate its overall organization in individuals with low and high crystallized Intelligence Quotient (IQ). Functional magnetic resonance imaging (fMRI) data were selected from 136 subjects in resting-state from the Human Connectome Project (HCP) database and were further separated into two IQ groups composed of 69 low-IQ and 67 high-IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject) using a standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed by computing Pearson's correlation coefficients between the average BOLD time-series for each pair of ROIs inside the cerebellum. By computing conventional graph metrics, small-world network properties were verified using the weighted clustering coefficient and the characteristic path length for estimating the trade-off between segregation and integration. In addition, a connectivity metric was computed for extracting the average cost per network. The concept of the Minimum Spanning Tree (MST) was adopted and implemented in order to avoid methodological biases in graph comparisons and retain only the strongest connections per network. Subsequently, six global and three local metrics were calculated in order to retrieve useful features concerning the characteristics of each MST. Moreover, the local metrics of degree and betweenness centrality were used to detect hubs, i.e., nodes with high importance. The computed set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-IQ groups, as well as between all possible gender-based group combinations. Our results reveal that both male and female networks have small-world properties with differences in females (especially in higher IQ females) indicative of higher neural efficiency in cerebellum. There is a trend toward the same direction in men, but without significant differences. Finally, three lobules showed maximum correlation with the median response time in low-IQ individuals, implying that there is an increased effort dedicated locally by this population in cognitive tasks

    The CPLEAR detector at CERN

    Get PDF
    The CPLEAR collaboration has constructed a detector at CERN for an extensive programme of CP-, T- and CPT-symmetry studies using K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 produced by the annihilation of pˉ\bar{\rm p}'s in a hydrogen gas target. The K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 are identified by their companion products of the annihilation K±π{\rm K}^{\pm} \pi^{\mp} which are tracked with multiwire proportional chambers, drift chambers and streamer tubes. Particle identification is carried out with a liquid Cherenkov detector for fast separation of pions and kaons and with scintillators which allow the measurement of time of flight and energy loss. Photons are measured with a lead/gas sampling electromagnetic calorimeter. The required antiproton annihilation modes are selected by fast online processors using the tracking chamber and particle identification information. All the detectors are mounted in a 0.44 T uniform field of an axial solenoid of diameter 2 m and length 3.6 m to form a magnetic spectrometer capable of full on-line reconstruction and selection of events. The design, operating parameters and performance of the sub-detectors are described.

    Are Females More Responsive to Emotional Stimuli? A Neurophysiological Study Across Arousal and Valence Dimensions

    Get PDF
    Men and women seem to process emotions and react to them differently. Yet, few neurophysiological studies have systematically investigated gender differences in emotional processing. Here, we studied gender differences using Event Related Potentials (ERPs) and Skin Conductance Responses (SCR) recorded from participants who passively viewed emotional pictures selected from the International Affective Picture System (IAPS). The arousal and valence dimension of the stimuli were manipulated orthogonally. The peak amplitude and peak latency of ERP components and SCR were analyzed separately, and the scalp topographies of significant ERP differences were documented. Females responded with enhanced negative components (N100 and N200), in comparison to males, especially to the unpleasant visual stimuli, whereas both genders responded faster to high arousing or unpleasant stimuli. Scalp topographies revealed more pronounced gender differences on central and left hemisphere areas. Our results suggest a difference in the way emotional stimuli are processed by genders: unpleasant and high arousing stimuli evoke greater ERP amplitudes in women relatively to men. It also seems that unpleasant or high arousing stimuli are temporally prioritized during visual processing by both genders

    Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist)

    Get PDF
    Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.</p

    Effects of substrate and salinity in hydroponically grown Cichorium spinosum

    No full text
    The present work, examined the effect of salinity (5, 40 and 120 mmol L-1 NaCl) in the growth and the quality of hydroponic culture of stamnagathi (Cichorium spinosum L.). Plants were developed in perlite, pumice, rockwool and sand respectively. High salinity decreased leaf number, leaf size and plant biomass in plants grown in perlite, pumice and sand. Reduced plant biomass also observed in plant grown in rockwool, although an increased number of leaves were produced. Leaf area reduced in plants grown in rockwool and sand under 120 mmol L-1 NaCl. Low salinity maintained almost similar status as the control treatments. Symptoms of tip burn appeared in 120 mmol L-1 NaCl treated stamnagathi for perlite and pumice. No differences observed in leaf chlorophyll content, leaf fluorescence and in symptoms of discoloration. When the perlite was used as substrate, salinity increased total phenols and decreased protein content. Finally, the low concentration of salinity improved some plant quality parameters as recorded by panelists, following organoleptic test. Thus, stamnagathi proved to successfully tolerate low salinity concentration in hydroponically grown plants

    Effects of substrate and salinity in hydroponically grown Cichorium spinosum

    No full text
    The present work, examined the effect of salinity (5, 40 and 120 mmol L-1 NaCl) in the growth and the quality of hydroponic culture of stamnagathi (Cichorium spinosum L.). Plants were developed in perlite, pumice, rockwool and sand respectively. High salinity decreased leaf number, leaf size and plant biomass in plants grown in perlite, pumice and sand. Reduced plant biomass also observed in plant grown in rockwool, although an increased number of leaves were produced. Leaf area reduced in plants grown in rockwool and sand under 120 mmol L-1 NaCl. Low salinity maintained almost similar status as the control treatments. Symptoms of tip burn appeared in 120 mmol L-1 NaCl treated stamnagathi for perlite and pumice. No differences observed in leaf chlorophyll content, leaf fluorescence and in symptoms of discoloration. When the perlite was used as substrate, salinity increased total phenols and decreased protein content. Finally, the low concentration of salinity improved some plant quality parameters as recorded by panelists, following organoleptic test. Thus, stamnagathi proved to successfully tolerate low salinity concentration in hydroponically grown plants

    A short review of computerized monitoring systems for ADHD

    No full text
    Attention deficit-hyperactivity disorder (ADHD) is a neurobehavioral disorder characterized by either significant difficulties of attention or hyperactivity and impulsiveness or a combination of the two. Behavioral interventions seem to be a good treatment plan for ADHD, although it requires continuous monitoring of the ADHD condition in order to adapt the intervention over time. There have only been rather few computerized monitoring systems so far, mostly based on pre-existing classic forms for ADHD assessment. This study reviews the most popular computerized monitoring systems for ADHD, in an effort to suggest new ways for enhancing education for related healthcare professionals thereby indicating some interesting directions for future work
    corecore