35 research outputs found

    Transmission Shifts Underlie Variability in Population Responses to Yersinia pestis Infection

    Get PDF
    Host populations for the plague bacterium, Yersinia pestis, are highly variable in their response to plague ranging from near deterministic extinction (i.e., epizootic dynamics) to a low probability of extinction despite persistent infection (i.e., enzootic dynamics). Much of the work to understand this variability has focused on specific host characteristics, such as population size and resistance, and their role in determining plague dynamics. Here, however, we advance the idea that the relative importance of alternative transmission routes may vary causing shifts from epizootic to enzootic dynamics. We present a model that incorporates host and flea ecology with multiple transmission hypotheses to study how transmission shifts determine population responses to plague. Our results suggest enzootic persistence relies on infection of an off-host flea reservoir and epizootics rely on transiently maintained flea infection loads through repeated infectious feeds by fleas. In either case, early-phase transmission by fleas (i.e., transmission immediately following an infected blood meal) has been observed in laboratory studies, and we show that it is capable of driving plague dynamics at the population level. Sensitivity analysis of model parameters revealed that host characteristics (e.g., population size and resistance) vary in importance depending on transmission dynamics, suggesting that host ecology may scale differently through different transmission routes enabling prediction of population responses in a more robust way than using either host characteristics or transmission shifts alone

    Multiscale computational analysis of the bioelectric consequences of myocardial ischaemia and infarction

    Full text link
    [EN] Ischaemic heart disease is considered as the single most frequent cause of death, provoking more than 7 000 000 deaths every year worldwide. A high percentage of patients experience sudden cardiac death, caused in most cases by tachyarrhythmic mechanisms associated to myocardial ischaemia and infarction. These diseases are difficult to study using solely experimental means due to their complex dynamics and unstable nature. In the past decades, integrative computational simulation techniques have become a powerful tool to complement experimental and clinical research when trying to elucidate the intimate mechanisms of ischaemic electrophysiological processes and to aid the clinician in the improvement and optimization of therapeutic procedures. The purpose of this paper is to briefly review some of the multiscale computational models of myocardial ischaemia and infarction developed in the past 20 years, ranging from the cellular level to whole-heart simulations.This work was partially supported by the 'VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica' from the Ministerio de Economia y Competitividad of Spain (grant number TIN2012-37546-C03-01) and the European Commission (European Regional Development Funds-ERDF-FEDER), and by the Direccion General de Politica Cientifica de la Generalitat Valenciana (grant number GV/2013/119).Ferrero De Loma-Osorio, JM.; Trénor Gomis, BA.; Romero Pérez, L. (2014). Multiscale computational analysis of the bioelectric consequences of myocardial ischaemia and infarction. EP-Europace. 16(3):405-415. https://doi.org/10.1093/europace/eut405S40541516

    TBK1: a new player in ALS linking autophagy and neuroinflammation.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder affecting motor neurons, resulting in progressive muscle weakness and death by respiratory failure. Protein and RNA aggregates are a hallmark of ALS pathology and are thought to contribute to ALS by impairing axonal transport. Mutations in several genes known to contribute to ALS result in deposition of their protein products as aggregates; these include TARDBP, C9ORF72, and SOD1. In motor neurons, this can disrupt transport of mitochondria to areas of metabolic need, resulting in damage to cells and can elicit a neuroinflammatory response leading to further neuronal damage. Recently, eight independent human genetics studies have uncovered a link between TANK-binding kinase 1 (TBK1) mutations and ALS. TBK1 belongs to the IKK-kinase family of kinases that are involved in innate immunity signaling pathways; specifically, TBK1 is an inducer of type-1 interferons. TBK1 also has a major role in autophagy and mitophagy, chiefly the phosphorylation of autophagy adaptors. Several other ALS genes are also involved in autophagy, including p62 and OPTN. TBK1 is required for efficient cargo recruitment in autophagy; mutations in TBK1 may result in impaired autophagy and contribute to the accumulation of protein aggregates and ALS pathology. In this review, we focus on the role of TBK1 in autophagy and the contributions of this process to the pathophysiology of ALS

    Rare Variants in APP, PSEN1 and PSEN2 Increase Risk for AD in Late-Onset Alzheimer's Disease Families

    Get PDF
    Pathogenic mutations in APP, PSEN1, PSEN2, MAPT and GRN have previously been linked to familial early onset forms of dementia. Mutation screening in these genes has been performed in either very small series or in single families with late onset AD (LOAD). Similarly, studies in single families have reported mutations in MAPT and GRN associated with clinical AD but no systematic screen of a large dataset has been performed to determine how frequently this occurs. We report sequence data for 439 probands from late-onset AD families with a history of four or more affected individuals. Sixty sequenced individuals (13.7%) carried a novel or pathogenic mutation. Eight pathogenic variants, (one each in APP and MAPT, two in PSEN1 and four in GRN) three of which are novel, were found in 14 samples. Thirteen additional variants, present in 23 families, did not segregate with disease, but the frequency of these variants is higher in AD cases than controls, indicating that these variants may also modify risk for disease. The frequency of rare variants in these genes in this series is significantly higher than in the 1,000 genome project (p = 5.09×10−5; OR = 2.21; 95%CI = 1.49–3.28) or an unselected population of 12,481 samples (p = 6.82×10−5; OR = 2.19; 95%CI = 1.347–3.26). Rare coding variants in APP, PSEN1 and PSEN2, increase risk for or cause late onset AD. The presence of variants in these genes in LOAD and early-onset AD demonstrates that factors other than the mutation can impact the age at onset and penetrance of at least some variants associated with AD. MAPT and GRN mutations can be found in clinical series of AD most likely due to misdiagnosis. This study clearly demonstrates that rare variants in these genes could explain an important proportion of genetic heritability of AD, which is not detected by GWAS

    Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.

    Get PDF
    We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered

    Recent advances in amyotrophic lateral sclerosis

    Get PDF

    Impacto do metilfenidato sobre a frequ?ncia e a gravidade das crises epil?pticas em crian?as com o transtorno de d?ficit de aten??o e hiperatividade (TDAH) associado a epilepsias de dif?cil controle

    No full text
    Made available in DSpace on 2015-04-14T13:35:07Z (GMT). No. of bitstreams: 1 429858.pdf: 1969812 bytes, checksum: c7540fca0edf60906798147231a0269f (MD5) Previous issue date: 2010-09-29Objetivo o objetivo do estudo foi avaliar a efic?cia e a seguran?a do tratamento do Transtorno de d?ficit de aten??o/hiperatividade em crian?as e adolescentes com epilepsia e crises epil?pticas em atividade. M?todos 22 de um total de 75 crian?as com m?dia de idade (11,4? 3,7) recebendo tratamento com drogas antiepil?ticas, atendidas em um centro de atendimento terci?rio para epilepsia, tiveram os crit?rios de inclus?o no estudo, apresentando pelo menos uma crise epil?ptica nos ?ltimos tr?s meses. O diagnostico do Transtorno de d?ficit de aten??o/hiperatividade (TDAH) foi realizado por uma entrevista cl?nica com identifica??o de sintomas de acordo com os crit?rios do DSM-IV. Tamb?m foram realizados o Kiddie-SADS e o SNAP-IV. Durante os tr?s meses iniciais do estudo as crian?as foram tratadas apenas com F?rmacos antiepil?pticos (FAE). Nos 3 meses restantes o Metilfenidato (MFD) foi iniciado e ajustado para doses terap?uticas. A seguran?a no tratamento com o MFD foi avaliada pelas mudan?as na frequ?ncia e na gravidade das crises epil?pticas comparando o per?odo do baseline ao per?odo de tratamento com o MFD. As escalas de HASS e Barkley foram utilizadas, respectivamente, para avaliar mudan?as sobre a gravidade das crises e os efeitos adversos provocados com a prescri??o do MFD. Melhora nos sintomas do TDAH foram avaliadas pelos escores do SNAP-IV. Resultados A an?lise de todo o grupo demonstrou melhora na frequ?ncia e na gravidade das crises epil?pticas pelo efeito da interven??o com o MFD. Conclus?o O MFD, em baixa dose, foi efetivo para o tratamento dos sintomas de TDAH, com boa tolerabilidade e seguran?a nos pacientes com epilepsia ativa. ? necess?rio a realiza??o de um estudo duplo cego envolvendo apenas sujeitos que t?m epilepsias refrat?rias com elevada frequ?ncia de crises para confirmar os resultados deste efeito do MFD sobre a redu??o na frequ?ncia e na gravidade das crises epil?pticas

    Buchbesprechungen

    No full text
    corecore