2,690 research outputs found

    Who is Subsidizing the Agricultural Sector Most - The EC or the US

    Get PDF

    Solar-like oscillations in the G9.5 subgiant beta Aquilae

    Full text link
    An interesting asteroseismic target is the G9.5 IV solar-like star beta Aql. This is an ideal target for asteroseismic investigations, because precise astrometric measurements are available from Hipparcos that greatly help in constraining the theoretical interpretation of the results. The star was observed during six nights in August 2009 by means of the high-resolution \'echelle spectrograph SARG operating with the TNG 3.58 m Italian telescope on the Canary Islands, exploiting the iodine cell technique. We present the result and the detailed analysis of high-precision radial velocity measurements, where the possibility of detecting time individual p-mode frequencies for the first and deriving their corresponding asymptotic values will be discussed. The time-series analysis carried out from \sim 800 collected spectra shows the typical p-mode frequency pattern with a maximum centered at 416 \muHz. In the frequency range 300 - 600 \muHz we identified for the first time six high S/N (\gtrsim 3.5) modes with l = 0,2 and 11 < n < 16 and three possible candidates for mixed modes (l = 1), although the p-mode identification for this type of star appears to be quite difficult owing to a substantial presence of avoided crossings. The large frequency separation and the surface term from the set of identified modes by means of the asymptotic relation were derived for the first time. Their values are \Delta \nu = 29.56 \pm 0.10 \muHz and \epsilon = 1.29 \pm 0.04, consistent with expectations. The most likely value for the small separation is \delta\nu_{02} = 2.55 \pm 0.71 \muHz.Comment: 8 pages, 8 figures, 3 tables, accepted by A&

    Search for sdB/WD pulsators in the Kepler FOV

    Full text link
    In this article we present the preliminary results of an observational search for subdwarf B and white dwarf pulsators in the Kepler field of view, performed using the DOLORES camera attached to the 3.6m Telescopio Nazionale Galileo (TNG).Comment: Communications in Asteroseismology, in press; 2 pages, 1 figur

    Characteristics of solar-like oscillations in red giants observed in the CoRoT exoplanet field

    Full text link
    Observations during the first long run (~150 days) in the exo-planet field of CoRoT increase the number of G-K giant stars for which solar-like oscillations are observed by a factor of 100. This opens the possibility to study the characteristics of their oscillations in a statistical sense. We aim to understand the statistical distribution of the frequencies of maximum oscillation power (nu_max) in red giants and to search for a possible correlation between nu_max and the large separation (delta_nu). The nu_max distribution shows a pronounced peak between 20 - 40 microHz. For about half of the stars we obtain delta_nu with at least two methods. The correlation between nu_max and delta_nu follows the same scaling relation as inferred for solar-like stars. The shape of the nu_max distribution can partly be explained by granulation at low frequencies and by white noise at high frequencies, but the population density of the observed stars turns out to be also an important factor. From the fact that the correlation between delta_nu and nu_max for red giants follows the same scaling relation as obtained for sun-like stars, we conclude that the sound travel time over the pressure scale height of the atmosphere scales with the sound travel time through the whole star irrespective of evolution.Comment: Accepted for publication in Astronomy and Astrophysics (CoRoT special issue), 5 pages, 7 figures and 1 tabl

    Seismology of Procyon A: determination of mode frequencies, amplitudes, lifetimes, and granulation noise

    Get PDF
    The F5 IV-V star Procyon A (aCMi) was observed in January 2001 by means of the high resolution spectrograph SARG operating with the TNG 3.5m Italian telescope (Telescopio Nazionale Galileo) at Canary Islands, exploiting the iodine cell technique. The time-series of about 950 spectra carried out during 6 observation nights and a preliminary data analysis were presented in Claudi et al. 2005. These measurements showed a significant excess of power between 0.5 and 1.5 mHz, with ~ 1 m/s peak amplitude. Here we present a more detailed analysis of the time-series, based on both radial velocity and line equivalent width analyses. From the power spectrum we found a typical p-mode frequency comb-like structure, identified with a good margin of certainty 11 frequencies in the interval 0.5-1400 mHz of modes with l=0,1,2 and 7< n < 22, and determined large and small frequency separations, Dn = 55.90 \pm 0.08 muHz and dnu_02=7.1 \pm 1.3 muHz, respectively. The mean amplitude per mode (l=0,1) at peak power results to be 0.45 \pm 0.07 m/s, twice larger than the solar one, and the mode lifetime 2 \pm 0.4 d, that indicates a non-coherent, stochastic source of mode excitation. Line equivalent width measurements do not show a significant excess of power in the examined spectral region but allowed us to infer an upper limit to the granulation noise.Comment: 10 pages, 15 figures, 4 tables. Accepted for publication in A&

    Photoionization cross sections of O II, O III, O IV, and O V: benchmarking R-matrix theory and experiments

    Get PDF
    For crucial tests between theory and experiment, ab initio close coupling calculations are carried out for photoionization of O II, O III, O IV, O V. The relativistic fine structure and resonance effects are studied using the R-matrix and its relativistic variant the Breit Pauli R-matrix (BPRM) approximation. Detailed comparison is made with high resolution experimental measurements carried out in three different set-ups: Advanced Light Source at Berkeley, and synchrotron radiation experiments at University of Aarhus and University of Paris-Sud. The comparisons illustrate physical effects in photoionization such as (i) fine structure, (ii) resolution, and (iii) metastable components. Photoionization cross sections sigma{PI} of the ground and a few low lying excited states of these ions obtained in the experimental spectrum include combined features of these states. Theoretically calculated resonances need to be resolved with extremely fine energy mesh for precise comparison. In addition, prominent resonant features are observed in the measured spectra from transitions allowed with relativistic fine structure, but not in LS coupling. The sigma_{PI} are obtained for ground and metastable (i) 2s^22p^3(^4S^o, ^2D^o, ^2P^o) states of O II, (ii) 2s^22p^2(^3P,^1D,^1S) and 2s2p^3(^5S^o) states of O III, (iii) 2s^22p(^2P^o_J) and 2s2p^2(^4P_J) levels of O IV, and (iv) 2s^2(^1S) and 2s2p(^3P^o,^1P^o) states of O V. It is found that resonances in ground and metastable cross sections can be a diagnostic of experimental beam composition, with potential ap plications to astrophysical and laboratory plasma environments.Comment: 27 pages, 7 figs., submitted to Phys. Rev. A., text with high resolution figures at http://www.astronomy.ohio-state.edu/~pradhan/Oions.p

    Finding binaries among Kepler pulsating stars from phase modulation of their pulsations

    Get PDF
    We present a method for finding binaries among pulsating stars that were observed by the Kepler Mission. We use entire 4 yr light curves to accurately measure the frequencies of the strongest pulsation modes, and then track the pulsation phases at those frequencies in 10-d segments. This produces a series of time-delay measurements in which binarity is apparent as a periodic modulation whose amplitude gives the projected light travel time across the orbit. Fourier analysis of this time-delay curve provides the parameters of the orbit, including the period, eccentricity, angle of ascending node, and time of periastron passage. Differentiating the time-delay curve yields the full radial-velocity curve directly from the Kepler photometry, without the need for spectroscopy.We showexamples with δ scuti stars having large numbers of pulsation modes, including one system in which both components of the binary are pulsating. The method is straightforward to automate, thus radial velocity curves can be derived for hundreds of non-eclipsing binary stars from Kepler photometry alone

    Solar-like oscillations in the G8 V star tau Ceti

    Full text link
    We used HARPS to measure oscillations in the low-mass star tau Cet. Although the data were compromised by instrumental noise, we have been able to extract the main features of the oscillations. We found tau Cet to oscillate with an amplitude that is about half that of the Sun, and with a mode lifetime that is slightly shorter than solar. The large frequency separation is 169 muHz, and we have identified modes with degrees 0, 1, 2, and 3. We used the frequencies to estimate the mean density of the star to an accuracy of 0.45% which, combined with the interferometric radius, gives a mass of 0.783 +/- 0.012 M_sun (1.6%).Comment: accepted for publication in A&
    • …
    corecore