2,690 research outputs found
Solar-like oscillations in the G9.5 subgiant beta Aquilae
An interesting asteroseismic target is the G9.5 IV solar-like star beta Aql.
This is an ideal target for asteroseismic investigations, because precise
astrometric measurements are available from Hipparcos that greatly help in
constraining the theoretical interpretation of the results. The star was
observed during six nights in August 2009 by means of the high-resolution
\'echelle spectrograph SARG operating with the TNG 3.58 m Italian telescope on
the Canary Islands, exploiting the iodine cell technique. We present the result
and the detailed analysis of high-precision radial velocity measurements, where
the possibility of detecting time individual p-mode frequencies for the first
and deriving their corresponding asymptotic values will be discussed. The
time-series analysis carried out from \sim 800 collected spectra shows the
typical p-mode frequency pattern with a maximum centered at 416 \muHz. In the
frequency range 300 - 600 \muHz we identified for the first time six high S/N
(\gtrsim 3.5) modes with l = 0,2 and 11 < n < 16 and three possible candidates
for mixed modes (l = 1), although the p-mode identification for this type of
star appears to be quite difficult owing to a substantial presence of avoided
crossings. The large frequency separation and the surface term from the set of
identified modes by means of the asymptotic relation were derived for the first
time. Their values are \Delta \nu = 29.56 \pm 0.10 \muHz and \epsilon = 1.29
\pm 0.04, consistent with expectations. The most likely value for the small
separation is \delta\nu_{02} = 2.55 \pm 0.71 \muHz.Comment: 8 pages, 8 figures, 3 tables, accepted by A&
Search for sdB/WD pulsators in the Kepler FOV
In this article we present the preliminary results of an observational search
for subdwarf B and white dwarf pulsators in the Kepler field of view, performed
using the DOLORES camera attached to the 3.6m Telescopio Nazionale Galileo
(TNG).Comment: Communications in Asteroseismology, in press; 2 pages, 1 figur
Characteristics of solar-like oscillations in red giants observed in the CoRoT exoplanet field
Observations during the first long run (~150 days) in the exo-planet field of
CoRoT increase the number of G-K giant stars for which solar-like oscillations
are observed by a factor of 100. This opens the possibility to study the
characteristics of their oscillations in a statistical sense. We aim to
understand the statistical distribution of the frequencies of maximum
oscillation power (nu_max) in red giants and to search for a possible
correlation between nu_max and the large separation (delta_nu). The nu_max
distribution shows a pronounced peak between 20 - 40 microHz. For about half of
the stars we obtain delta_nu with at least two methods. The correlation between
nu_max and delta_nu follows the same scaling relation as inferred for
solar-like stars. The shape of the nu_max distribution can partly be explained
by granulation at low frequencies and by white noise at high frequencies, but
the population density of the observed stars turns out to be also an important
factor. From the fact that the correlation between delta_nu and nu_max for red
giants follows the same scaling relation as obtained for sun-like stars, we
conclude that the sound travel time over the pressure scale height of the
atmosphere scales with the sound travel time through the whole star
irrespective of evolution.Comment: Accepted for publication in Astronomy and Astrophysics (CoRoT special
issue), 5 pages, 7 figures and 1 tabl
Seismology of Procyon A: determination of mode frequencies, amplitudes, lifetimes, and granulation noise
The F5 IV-V star Procyon A (aCMi) was observed in January 2001 by means of
the high resolution spectrograph SARG operating with the TNG 3.5m Italian
telescope (Telescopio Nazionale Galileo) at Canary Islands, exploiting the
iodine cell technique. The time-series of about 950 spectra carried out during
6 observation nights and a preliminary data analysis were presented in Claudi
et al. 2005. These measurements showed a significant excess of power between
0.5 and 1.5 mHz, with ~ 1 m/s peak amplitude. Here we present a more detailed
analysis of the time-series, based on both radial velocity and line equivalent
width analyses. From the power spectrum we found a typical p-mode frequency
comb-like structure, identified with a good margin of certainty 11 frequencies
in the interval 0.5-1400 mHz of modes with l=0,1,2 and 7< n < 22, and
determined large and small frequency separations, Dn = 55.90 \pm 0.08 muHz and
dnu_02=7.1 \pm 1.3 muHz, respectively. The mean amplitude per mode (l=0,1) at
peak power results to be 0.45 \pm 0.07 m/s, twice larger than the solar one,
and the mode lifetime 2 \pm 0.4 d, that indicates a non-coherent, stochastic
source of mode excitation. Line equivalent width measurements do not show a
significant excess of power in the examined spectral region but allowed us to
infer an upper limit to the granulation noise.Comment: 10 pages, 15 figures, 4 tables. Accepted for publication in A&
Photoionization cross sections of O II, O III, O IV, and O V: benchmarking R-matrix theory and experiments
For crucial tests between theory and experiment, ab initio close coupling
calculations are carried out for photoionization of O II, O III, O IV, O V. The
relativistic fine structure and resonance effects are studied using the
R-matrix and its relativistic variant the Breit Pauli R-matrix (BPRM)
approximation. Detailed comparison is made with high resolution experimental
measurements carried out in three different set-ups: Advanced Light Source at
Berkeley, and synchrotron radiation experiments at University of Aarhus and
University of Paris-Sud. The comparisons illustrate physical effects in
photoionization such as (i) fine structure, (ii) resolution, and (iii)
metastable components. Photoionization cross sections sigma{PI} of the ground
and a few low lying excited states of these ions obtained in the experimental
spectrum include combined features of these states. Theoretically calculated
resonances need to be resolved with extremely fine energy mesh for precise
comparison. In addition, prominent resonant features are observed in the
measured spectra from transitions allowed with relativistic fine structure, but
not in LS coupling. The sigma_{PI} are obtained for ground and metastable (i)
2s^22p^3(^4S^o, ^2D^o, ^2P^o) states of O II, (ii) 2s^22p^2(^3P,^1D,^1S) and
2s2p^3(^5S^o) states of O III, (iii) 2s^22p(^2P^o_J) and 2s2p^2(^4P_J) levels
of O IV, and (iv) 2s^2(^1S) and 2s2p(^3P^o,^1P^o) states of O V. It is found
that resonances in ground and metastable cross sections can be a diagnostic of
experimental beam composition, with potential ap plications to astrophysical
and laboratory plasma environments.Comment: 27 pages, 7 figs., submitted to Phys. Rev. A., text with high
resolution figures at http://www.astronomy.ohio-state.edu/~pradhan/Oions.p
Finding binaries among Kepler pulsating stars from phase modulation of their pulsations
We present a method for finding binaries among pulsating stars that were observed by the Kepler Mission. We use entire 4 yr light curves to accurately measure the frequencies of the strongest pulsation modes, and then track the pulsation phases at those frequencies in 10-d segments. This produces a series of time-delay measurements in which binarity is apparent as a periodic modulation whose amplitude gives the projected light travel time across the orbit.
Fourier analysis of this time-delay curve provides the parameters of the orbit, including the period, eccentricity, angle of ascending node, and time of periastron passage. Differentiating the time-delay curve yields the full radial-velocity curve directly from the Kepler photometry, without the need for spectroscopy.We showexamples with δ scuti stars having large numbers of pulsation modes, including one system in which both components of the binary are pulsating. The method is straightforward to automate, thus radial velocity curves can be derived for hundreds of non-eclipsing binary stars from Kepler photometry alone
Solar-like oscillations in the G8 V star tau Ceti
We used HARPS to measure oscillations in the low-mass star tau Cet. Although
the data were compromised by instrumental noise, we have been able to extract
the main features of the oscillations. We found tau Cet to oscillate with an
amplitude that is about half that of the Sun, and with a mode lifetime that is
slightly shorter than solar. The large frequency separation is 169 muHz, and we
have identified modes with degrees 0, 1, 2, and 3. We used the frequencies to
estimate the mean density of the star to an accuracy of 0.45% which, combined
with the interferometric radius, gives a mass of 0.783 +/- 0.012 M_sun (1.6%).Comment: accepted for publication in A&
- …