50 research outputs found

    Perspectives and Potential Applications of Mitochondria-Targeted Antioxidants in Cardiometabolic Diseases and Type 2 Diabetes

    Get PDF
    There is abundant evidence to suggest that mitochondrial dysfunction is a main cause of insulin resistance and related cardiometabolic comorbidities. On the other hand, insulin resistance is one of the main characteristics of type 2 diabetes, obesity, and metabolic syndrome. Lipid and glucose metabolism require mitochondria to generate energy, and when O2 consumption is low due to inefficient nutrient oxidation, there is an increase in reactive oxygen species, which can impair different types of molecules, including DNA, lipids, proteins, and carbohydrates, thereby inducing proinflammatory processes. Factors which contribute to mitochondrial dysfunction, such as mitochondrial biogenesis and genetics, can also lead to insulin resistance in different insulin-target tissues, and its association with mitochondrial dysfunction can culminate in the development of cardiovascular diseases. In this context, therapies that improve mitochondrial function may also improve insulin resistance. This review explains mechanisms of mitochondrial function related to the pathological effects of insulin resistance in different tissues. The pathogenesis of cardiometabolic diseases will be explained from a mitochondrial perspective and the potential beneficial effects of mitochondria-targeted antioxidants as a therapy for modulating mitochondrial function in cardiometabolic diseases, especially diabetes, will also be considered.Contract grant sponsor: PI10/1195; Contract grant sponsor: PI 12/1984; Contract grant sponsor: CIBERehd CB06/04/0071; Contract grant sponsor: PROMETEO 2010/060; Contract grant sponsor: ACOMP/2012/042; Contract grant sponsor: ACOMP/2012/045; Contract grant sponsor: ACOMP2013/061; Contract grant sponsor: European Regional Development Fund (ERDF)

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Measuring FMD in the brachial artery: how important is QRS gating?

    No full text
    Recommendations for the measurement of brachial flow-mediated dilation (FMD) typically suggest images be obtained at identical times in the cardiac cycle, usually end diastole (QRS complex onset). This recommendation presumes that inter-individual differences in arterial compliance are minimized. However, published evidence is conflicting. Furthermore, ECG gating is not available on many ultrasound systems; it requires an expensive software upgrade or increased image processing time. We tested whether analysis of images acquired with QRS gating or with the more simplified method of image averaging would yield similar results. We analyzed FMD and nitroglycerin-mediated dilation (NMD) in 29 adults with type 2 diabetes mellitus and in 31 older adults and 12 young adults without diabetes, yielding a range of brachial artery distensibility. FMD and NMD were measured using recommended QRS-gated brachial artery diameter measurements and, alternatively, the average brachial diameters over the entire R-R interval. We found strong agreement between both methods for FMD and NMD (intraclass correlation coefficients = 0.88–0.99). Measuring FMD and NMD using average diameter measurements significantly reduced post-image-processing time (658.9 ± 71.6 vs. 1,024.1 ± 167.6 s for QRS-gated analysis, P < 0.001). FMD and NMD measurements based on average diameter measurements can be performed without reducing accuracy. This finding may allow for simplification of FMD measurement and aid in the development of FMD as a potentially useful clinical tool
    corecore