187 research outputs found
Time dependent correlations in marine stratocumulus cloud base height records
The scaling ranges of time correlations in the cloud base height records of
marine boundary layer stratocumulus are studied applying the Detrended
Fluctuation Analysis statistical method. We have found that time dependent
variations in the evolution of the exponent reflect the diurnal
dynamics of cloud base height fluctuations in the marine boundary layer. In
general, a more stable structure of the boundary layer corresponds to a lower
value of the - indicator, i.e. larger anti-persistence, thus a set of
fluctuations tending to induce a greater stability of the stratocumulus. In
contrast, during periods of higher instability in the marine boundary, less
anti-persistent (more persistent like) behavior of the system drags it out of
equilibrium, corresponding to larger values. From an analysis of the
frequency spectrum, the stratocumulus base height evolution is found to be a
non-stationary process with stationary increments. The occurrence of these
statistics in cloud base height fluctuations suggests the usefulness of similar
studies for the radiation transfer dynamics modeling.Comment: 12 pages, 6 figures; to appear in Int. J. Mod. Phys. C, Vol. 13, No.
2 (2002
Statistical Physics in Meteorology
Various aspects of modern statistical physics and meteorology can be tied
together. The historical importance of the University of Wroclaw in the field
of meteorology is first pointed out. Next, some basic difference about time and
space scales between meteorology and climatology is outlined. The nature and
role of clouds both from a geometric and thermal point of view are recalled.
Recent studies of scaling laws for atmospheric variables are mentioned, like
studies on cirrus ice content, brightness temperature, liquid water path
fluctuations, cloud base height fluctuations, .... Technical time series
analysis approaches based on modern statistical physics considerations are
outlined.Comment: Short version of an invited paper at the XXIth Max Born
symposium,Ladek Zdroj, Poland; Sept. 200
Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation
The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Deletion of a gene encoding a putative deacetylase, Agd3, leads to defects in GAG deacetylation, biofilm formation, and virulence. Here, we show that Agd3 deacetylates GAG in a metal-dependent manner, and is the founding member of carbohydrate esterase family CE18. The active site is formed by four catalytic motifs that are essential for activity. The structure of Agd3 includes an elongated substrate-binding cleft formed by a carbohydrate binding module (CBM) that is the founding member of CBM family 87. Agd3 homologues are encoded in previously unidentified putative bacterial exopolysaccharide biosynthetic operons and in other fungal genomes. The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Here, the authors study an A. fumigatus enzyme that deacetylates GAG in a metal-dependent manner and constitutes a founding member of a new carbohydrate esterase family.Bio-organic Synthesi
<i>Pseudomonas aeruginosa</i> AlgF is a protein-protein interaction mediator required for acetylation of the alginate exopolysaccharide
Enzymatic modifications of bacterial exopolysaccharides enhance immune evasion and persistence during infection. In the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, acetylation of alginate reduces opsonic killing by phagocytes and improves reactive oxygen species scavenging. Although it is well-known that alginate acetylation in P. aeruginosa requires AlgI, AlgJ, AlgF, and AlgX, how these proteins coordinate polymer modification at a molecular level remains unclear. Here, we describe the structural characterization of AlgF and its protein interaction network. We characterize direct interactions between AlgF and both AlgJ and AlgX in vitro, and demonstrate an association between AlgF and AlgX, as well as AlgJ and AlgI, in P. aeruginosa. We determine that AlgF does not exhibit acetylesterase activity and is unable to bind to polymannuronate in vitro. Therefore, we propose that AlgF functions to mediate protein-protein interactions between alginate acetylation enzymes, forming the periplasmic AlgJFXK (AlgJ-AlgF-AlgX-AlgK) acetylation and export complex required for robust biofilm formation.</p
Structure and stability of carbohydrate-lipid interactions: Methylmannose polysaccharide-fatty acid complexes
We report a detailed study of the structure and stability of carbohydrate–lipid interactions. Complexes of a methylmannose polysaccharide (MMP) derivative and fatty acids (FAs) served as model systems. The dependence of solution affinities and gas-phase dissociation activation energies (Ea) on FA length indicates a dominant role of carbohydrate–lipid interactions in stabilizing (MMP+FA) complexes. Solution 1H NMR results reveal weak interactions between MMP methyl groups and FA acyl chain; MD simulations suggest the complexes are disordered. The contribution of FA methylene groups to the Ea is similar to that of heats of transfer of n-alkanes from the gas phase to polar solvents, thus suggesting that MMP binds lipids through dipole-induced dipole interactions. The MD results point to hydrophobic interactions and H-bonds with the FA carboxyl group. Comparison of collision cross sections of deprotonated (MMP+FA) ions with MD structures suggests that the gaseous complexes are disordered
Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague
The bacterial pathogenYersinia pestisgave rise to devastating outbreaks throughouthuman history, and ancient DNA evidence has shown it afflicted human populations asfar back as the Neolithic.Y. pestisgenomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to itsemergence from aYersinia pseudotuberculosis-like progenitor; however, the number ofreconstructed LNBA genomes are too few to explore its diversity during this criticalperiod of development. Here, we present 17Y. pestisgenomes dating to 5,000 to 2,500y BP from a wide geographic expanse across Eurasia. This increased dataset enabled usto explore correlations between temporal, geographical, and genetic distance. Ourresults suggest a nonflea-adapted and potentially extinct single lineage that persistedover millennia without significant parallel diversification, accompanied by rapid dis-persal across continents throughout this period, a trend not observed in other pathogensfor which ancient genomes are available. A stepwise pattern of gene loss provides fur-ther clues on its early evolution and potential adaptation. We also discover the presenceof theflea-adapted form ofY. pestisin Bronze Age Iberia, previously only identified inin the Caucasus and the Volga regions, suggesting a much wider geographic spread ofthis form ofY. pestis. Together, these data reveal the dynamic nature of plague’s forma-tive years in terms of its early evolution and ecology
Threshold dissociation energies of protonated amine/polyether complexes in a quadrupole ion trap
Quantifying Biomolecular Interactions Using Slow Mixing Mode (SLOMO) Nanoflow ESI-MS
Electrospray ionization mass spectrometry (ESI-MS) is a powerful label-free assay for detecting noncovalent biomolecular complexes in vitro and is increasingly used to quantify binding thermochemistry. A common assumption made in ESI-MS affinity measurements is that the relative ion signals of free and bound species quantitatively reflect their relative concentrations in solution. However, this is valid only when the interacting species and their complexes have similar ESI-MS response factors (RFs). For many biomolecular complexes, such as protein-protein interactions, this condition is not satisfied. Existing strategies to correct for nonuniform RFs are generally incompatible with static nanoflow ESI (nanoESI) sources, which are typically used for biomolecular interaction studies, thereby significantly limiting the utility of ESI-MS. Here, we introduce slow mixing mode (SLOMO) nanoESI-MS, a direct technique that allows both the RF and affinity (K (d)) for a biomolecular interaction to be determined from a single measurement using static nanoESI. The approach relies on the continuous monitoring of interacting species and their complexes under nonhomogeneous solution conditions. Changes in ion signals of free and bound species as the system approaches or moves away from a steady-state condition allow the relative RFs of the free and bound species to be determined. Combining the relative RF and the relative abundances measured under equilibrium conditions enables the K (d) to be calculated. The reliability of SLOMO and its ease of use is demonstrated through affinity measurements performed on peptide-antibiotic, protease-protein inhibitor, and protein oligomerization systems. Finally, affinities measured for the binding of human and bacterial lectins to a nanobody, a viral glycoprotein, and glycolipids displayed within a model membrane highlight the tremendous power and versatility of SLOMO for accurately quantifying a wide range of biomolecular interactions important to human health and disease.</br
Stability of the homopentameric b subunits of shiga toxins 1 and 2 in solution and the gas phase as revealed by nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry
Identifying nonspecific ligand binding in electrospray ionization mass spectrometry using the reporter molecule method
- …
