8 research outputs found

    Nutritional evaluation of fodder, its preference and crop raiding by wild Asian elephant (Elephas maximus) in Sonitpur District of Assam, India

    No full text
    Aim: The present investigation was carried out to evaluate the nutritive value of fodder in natural habitat, cultivated crops and their preference by wild Asian elephant (Elephas maximus) in forest and non-forest areas in four seasons using field observation in Sonitpur District of Assam; since, there were frequent incidences of crop raiding by wild elephant leading to loss of property and human-elephant conflict. Materials and Methods: The study was conducted in four seasons. The study included forest areas of Sonai-Rupai Wildlife Sanctuary, part of Nameri National Park and high human-elephant conflicted areas of non-forest near to the sanctuary and parks. The consumed fodders were identified, collected and evaluated. The proximate composition was determined using AOAC (1990). Results: Total 39 different fodder species of 18 families including herbs, climber, grasses, paddy seeds, paddy saplings, plants and its leaves, bark, fruits, and roots were recorded to be utilized by elephants. The first three family of fodder that elephant relished more were Poaceae (46.15%), Musaceae (7.69%) and Zingiberaceae (5.13%) respectively. The crude protein content of fodder in all seasons, total ash content only in winter and post monsoon seasons and neutral detergent fiber content of fodder between forest and non-forest were significant (p<0.05). Elephants preferred to forage more on nutritionally rich fodder than poor natural fodder. Incidence of crop raiding was more in post monsoon season could be due to availability of nutritionally rich fodder than the poor natural fodder and generally happened in the night. Conclusions: The study revealed that during post monsoon season, there were abundant nutritionally rich sources of cultivated crops than the fodder of natural habitat that might provoke the wild elephants to raid crops. Poaceae shared a major portion of their diet. The findings will definitely help nutritionist, ecologist and policy makers to understand wild elephant’s needs and also to take appropriate measures for conservation of endangered wild Asian elephant as well as mitigation of human-elephant conflict

    Not Available

    No full text
    Not AvailableA study was conducted to measure the effect of melatonin (MT) on motility and velocity parameters of mithun semen by Computer Assisted Sperm Analyser (CASA) in different seasons. Total numbers of 80 ejaculates (20 ejaculates in each season) were collected twice a week from mithun bulls and were split into five equal aliquots, diluted with the Tris Egg Yolk Citrate (TEYC) extender. Group 1: semen without additives (control), group 2 to group 6: semen was diluted with 1, 2, 3, 4 and 5 mM of melatonin, respectively. CASA parameter such as Forward Progressive Motility (FPM), Total Motility (TM), Curvilinear Velocity (VCL), Straight Line Velocity (VSL), Average Path Velocity (VAP), Linearity (LIN), Straightness (STR), Amplitude of Lateral Head displacement (ALH) and Beat / Cross Frequency (BCF) were measured after 12 hrs of incubation at 5oC. Blood samples were collected in different seasons to estimate the melatonin. The results revealed that these parameters were varied significantly (p<0.05) among the different experimental groups and among the seasons. Further, MT at 3 mM has significant improvement than other treatment groups stored in in- vitro at different seasons. Additionally, spring season has highest value followed by winter and autumn season, whereas lower values were in summer season. Melatonin concentration was higher in winter season and lowest was in summer season. The result of the study indicated that the melatonin protects CASA parameters, varied in different seasons. It was concluded that ejaculates from spring and winter season has significantly higher CASA parameters in mithun.Not Availabl

    Abstracts of National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020

    No full text
    This book presents the abstracts of the papers presented to the Online National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020 (RDMPMC-2020) held on 26th and 27th August 2020 organized by the Department of Metallurgical and Materials Science in Association with the Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, India. Conference Title: National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020Conference Acronym: RDMPMC-2020Conference Date: 26–27 August 2020Conference Location: Online (Virtual Mode)Conference Organizer: Department of Metallurgical and Materials Engineering, National Institute of Technology JamshedpurCo-organizer: Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, IndiaConference Sponsor: TEQIP-

    Complement in removal of the dead – balancing inflammation

    No full text
    Recognition and removal of apoptotic and necrotic cells must be efficient and highly controlled to avoid excessive inflammation and autoimmune responses to self. The complement system, a crucial part of innate immunity, plays an important role in this process. Thus, apoptotic and necrotic cells are recognized by complement initiators such as C1q, mannose binding lectin, ficolins, and properdin. This triggers complement activation and opsonization of cells with fragments of C3b, which enhances phagocytosis and thus ensures silent removal. Importantly, the process is tightly controlled by the binding of complement inhibitors C4b-binding protein and factor H, which attenuates late steps of complement activation and inflammation. Furthermore, factor H becomes actively internalized by apoptotic cells, where it catalyzes the cleavage of intracellular C3 to C3b. The intracellularly derived C3b additionally opsonizes the cell surface further supporting safe and fast clearance and thereby aids to prevent autoimmunity. Internalized factor H also binds nucleosomes and directs monocytes into production of anti-inflammatory cytokines upon phagocytosis of such complexes. Disturbances in the complement-mediated clearance of dying cells result in persistence of autoantigens and development of autoimmune diseases like systemic lupus erythematosus, and may also be involved in development of age-related macula degeneration
    corecore