22 research outputs found

    Conditional deletion of Des1 in the mouse retina does not impair the visual cycle in cones

    Get PDF
    Cone photoreceptors are essential for vision under moderate to high illuminance and allow color discrimination. Their fast dark adaptation rate and resistance to saturation are believed to depend in part on an intraretinal visual cycle that supplies 11- cis-retinaldehyde to cone opsins. Candidate enzymes of this pathway have been reported, but their physiologic contribution to cone photoresponses remains unknown. Here, we evaluate the role of a candidate retinol isomerase of this pathway, sphingolipid δ4 desaturase 1 (Des1). Single-cell RNA sequencing analysis revealed Des1 expression not only in Müller glia but also throughout the retina and in the retinal pigment epithelium. We assessed cone functional dependence on Müller cell-expressed Des1 through a conditional knockout approach. Floxed Des1 mice, on a guanine nucleotide-binding protein subunit α transducin 1 knockout ( Gnat

    Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing

    Get PDF
    Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5–5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.National Institutes of Health (U.S.) (Intramural Research Program)National Human Genome Research Institute (U.S.)Charles University (program UNCE 204011)Charles University (program PRVOUK-P24/LF1/3)Czech Republic. Ministry of Education, Youth, and Sports (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant LH12015)National Institutes of Health (U.S.) (Harvard Digestive Diseases Center, grant DK34854

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Impulsive personality dimensions are associated with altered behavioral performance and neural responses in the monetary incentive delay task

    Get PDF
    Individual differences in dimensions of impulsivity personality including disinhibition and sensation seeking modulate approach responses to reinforcing stimuli, such as drugs and money. The current study examined the effects of monetary incentive on both behavioral performance and electrophysiological activity among individuals varying in disinhibition and sensation seeking. The monetary incentive delay (MID) task was completed under electroencephalogram (EEG) recording. Behavioral data showed that higher disinhibition and sensation-seeking were associated with lower performance accuracy. Event-related potential (ERP) data showed that high reinforcement cues elicited a larger late positive component (LPC) than other conditions among high disinhibition participants, indicating its strong emotional influence. Additionally, in the neutral incentive condition, the feedback-related negativity (FRN) elicited by correct outcomes was larger than that elicited by incorrect outcomes in the high disinhibition group only. This novel finding indicates that high disinhibition participants were less likely to expect correct outcomes compared to incorrect outcomes in the neutral incentive condition. Finally, the P3 component elicited by outcome presentation showed an interaction between two impulsivity dimensions; when disinhibition level was low, the P3 was larger among high than low sensation seeking participants.</p

    Local Source Vp and Vs Tomography in the Mount St. Helens Region With the iMUSH Broadband Array

    No full text
    We present new 3-D P wave and S wave velocity models of the upper 20 km of the Mount St. Helens (MSH) region. These were obtained using local-source arrival time tomography from earthquakes and explosions recorded at 70 broadband stations deployed as part of the imaging Magma Under St. Helens (iMUSH) project and augmented by several data sets. Principal features of our models include (1) low P wave and S wave velocities along the St. Helens seismic zone to depths of at least 20 km corresponding to high conductivity imaged by iMUSH magnetotelluric studies. This delineates a zone of weakness that magma can exploit at the location of MSH; (2) a 5- to 7-km diameter, 6-15 km deep, 3-6% negative P wave and S wave velocity anomaly beneath MSH, consistent with previous estimates of the source region for recent eruptions. We interpret this as a magma storage region containing up to 15-20 km(3) of partial melt, which is about 5 times more than the largest documented eruption at MSH; (3) a broad region of low P wave velocity below 10-km depth extending between Mount Adams and Mount Rainier along and to the east of the main Cascade arc, which is likely due to high-temperature arc crust and possible presence of fluids or melt; (4) several anomalies associated with surface-mapped features, including high-velocity igneous units such as the Spud Mountain and Spirit Lake plutons and low velocities in the Chehalis sedimentary basin and the Indian Heaven volcanic field. Our results place further constraints on the geometry of these features at depth. Plain Language Summary We deployed 70 seismometers around Mount St. Helens volcano from 2014 to 2016, which measured the surface ground motion from hundreds of small earthquakes, as well as from 23 explosions that were set off in 2014. We recorded the onset time of shaking from these sources and used a specialized computer code to model how quickly seismic waves travel through the subsurface. Seismic wave speed can be influenced by several factors, including rock type, presence of magma/fluids, temperature, pressure, and how fractured the rock is. Based on the seismic wave speeds in our model, we make several geological interpretations, including (1) increased fluids or fractures, or presence of sedimentary rocks corresponding to elevated earthquake activity to the NNW of Mount St. Helens; (2) a magma storage region beneath the volcano similar to results from previous studies. Our model places further constraints on the orientation and size of the region; (3) a large zone of high temperatures and possible fluids or magma related to regional volcanism between and to the east of Mount Adams and Mount Rainier; (4) more detailed size and depth constraints on geological features seen at the surface, including sedimentary basins and rock units related to previous regional volcanism. Key Points New high-resolution P wave and S wave velocity models are calculated for the Mount St. Helens region Velocity models place further constraints on size and location of magma storage regions, seismic zones, sedimentary basins, and plutons These shed light on the accretionary history of the Siletzia terrane, with a transitional upper crustal boundary near Mount St. HelensNational Science Foundation of Sri Lanka6 month embargo; first published online 19 February 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    An inducible Cre mouse for studying roles of the RPE in retinal physiology and disease

    No full text
    The retinal pigment epithelium (RPE) provides vital metabolic support for retinal photoreceptor cells and is an important player in numerous retinal diseases. Gene manipulation in mice using the Cre-LoxP system is an invaluable tool for studying the genetic basis of these retinal diseases. However, existing RPE-targeted Cre mouse lines have critical limitations that restrict their reliability for studies of disease pathogenesis and treatment, including mosaic Cre expression, inducer-independent activity, off-target Cre expression, and intrinsic toxicity. Here, we report the generation and characterization of a knockin mouse line in which a P2A-CreERT2 coding sequence is fused with the native RPE-specific 65 kDa protein (Rpe65) gene for cotranslational expression of CreERT2. Cre+/– mice were able to recombine a stringent Cre reporter allele with more than 99% efficiency and absolute RPE specificity upon tamoxifen induction at both postnatal days (PD) 21 and 50. Tamoxifen-independent Cre activity was negligible at PD64. Moreover, tamoxifen-treated Cre+/– mice displayed no signs of structural or functional retinal pathology up to 4 months of age. Despite weak RPE65 expression from the knockin allele, visual cycle function was normal in Cre+/– mice. These data indicate that Rpe65CreERT2 mice are well suited for studies of gene function and pathophysiology in the RPE
    corecore