96 research outputs found
Stream metabolism sources a large fraction of carbon dioxide to the atmosphere in two hydrologically contrasting headwater streams
Headwater streams are control points for carbon dioxide (CO) emissions to the atmosphere, with relative contributions to CO emission fluxes from lateral groundwater inputs widely assumed to overwhelm those from in-stream metabolic processes. We analyzed continuous measurements of stream dissolved CO and oxygen (CO) concentrations during spring and early summer in two Mediterranean headwater streams from which we evaluated the contribution of in-stream net ecosystem production (NEP) to CO emission. The two streams exhibited contrasting hydrological regimes: one was non-perennial with relatively small groundwater inflows, while the other was perennial and received significant lateral groundwater inputs. The non-perennial stream exhibited strong inverse coupling between instantaneous and daily CO and CO concentrations, and a strong correlation between aerobic ecosystem respiration (ER) and gross primary production (GPP) despite persistent negative NEP. At the perennial stream, the CO–O relationship varied largely over time, ER and GPP were uncorrelated, and NEP, which was consistently negative, increased with increasing temperature. Mean NEP contribution to CO emission was 51% and 57% at the non-perennial and perennial stream, respectively. Although these proportions varied with assumptions about metabolic stoichiometry and groundwater CO concentration, in-stream CO production consistently and substantially contributed to total atmospheric CO flux in both streams. We conclude that in-stream metabolism can be more important for driving C cycling in some headwater streams than previously assumed
JWST Reveals a Possible z ∼ 11 Galaxy Merger in Triply Lensed MACS0647-JD
MACS0647–JD is a triply lensed z ∼ 11 galaxy originally discovered with the Hubble Space Telescope. The three lensed images are magnified by factors of ∼8, 5, and 2 to AB mag 25.1, 25.6, and 26.6 at 3.5 μm. The brightest is over a magnitude brighter than other galaxies recently discovered at similar redshifts z > 10 with JWST. Here, we report new JWST imaging that clearly resolves MACS0647–JD as having two components that are either merging galaxies or stellar complexes within a single galaxy. The brighter larger component “A” is intrinsically very blue (β ∼ −2.6 ± 0.1), likely due to very recent star formation and no dust, and is spatially extended with an effective radius ∼70 ± 24 pc. The smaller component “B” (r ∼ 20-+58 pc) appears redder (β ∼ −2 ± 0.2), likely because it is older (100–200 Myr) with mild dust extinction (AV ∼ 0.1 mag). With an estimated stellar mass ratio of roughly 2:1
and physical projected separation ∼400 pc, we may be witnessing a galaxy merger 430 million years after the Big Bang. We identify galaxies with similar colors in a high-redshift simulation, finding their star formation histories to be dissimilar, which is also suggested by the spectral energy distribution fitting, suggesting they formed further apart. We also identify a candidate companion galaxy “C” ∼3 kpc away, likely destined to merge with A and B. Upcoming JWST Near Infrared Spectrograph observations planned for 2023 January will deliver spectroscopic redshifts and more physical properties for these tiny magnified distant galaxies observed in the early universe.We are grateful and indebted to all 20,000 people who worked to make JWST an incredible discovery machine. We dedicate these JWST observations to Rob Hawkins, former lead developer of the Astronomer’s Proposal Tool (APT). Rob lost his life in 2020 November while astronomers around the world were using APT to prepare observations we proposed for JWST Cycle 1. This work is based on observations made with the NASA/ESA/CSA James Webb Space Telescope (JWST) and Hubble Space Telescope (HST). The data were obtained from theMikulski Archive for Space Telescopes (MAST) at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with programs JWST-GO1433 and HST-GO 9722, 10493, 10793, and 12101. T.H. and A. were funded by a grant for JWST-GO-01433 provided by STScI under NASA contract NAS 5-03127. L.W. acknowledges support from the National Science Foundation Graduate Research Fellowship under grant No. DGE-2137419. A.A. acknowledges support from the Swedish Research Council (Vetenskapsrådet project grant No. 2021-05559). P. D. acknowledges support from the NWO grant 016. VIDI.189.162 (“ODIN”) and the European Commission’s and University of Groningen’s CO-FUND Rosalind Franklin program and warmly thanks the Institute for Advanced Study (IAS) Princeton, where a part of this work was carried out, for their generous hospitality and support through the Bershadsky Fund. The Cosmic Dawn Center is funded by the Danish National Research Foundation (DNRF) under grant #140. E.Z. and A.V. ackowledge support from the Swedish National Space Agency. M.B. acknowledges support from the Slovenian national research agency ARRS through grant No. N1-0238. M.O. acknowledges support from JSPS KAKENHI grant Nos. JP22H01260, JP20H05856, JP20H00181, and JP22K21349. A. Z., A.K.M., and L.J.F. acknowledge support by grant No. 2020750 from the United States-Israel Binational Science Foundation (BSF) and grant No. 2109066 from the United States National Science Foundation (NSF), and by the Ministry of Science & Technology, Israel. E.V. and M.N. acknowledge financial support through grant Nos. PRIN-MIUR 2017WSCC32 and 2020SKSTHZ and INAF “main-stream” grant Nos. 1.05.01.86.20 and 1.05.01.86.31. Y.J.-T. acknowl edges financial support from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 898633, the MSCA IF Extensions Program of the Spanish National Research Council (CSIC), and the State Agency for Research of the Spanish MCIU through the Center of Excellence Severo Ochoa award to the Instituto de Astrofísica de Andalucía (SEV-2017- 0709). A.C.C. thanks the Leverhulme Trust for their support via a Leverhulme Early Career Fellowshi
Genome Sequence of the Model Mushroom Schizophyllum Commune
Much remains to be learned about the biology of mushroom-forming fungi, which are an important source of food, secondary metabolites and industrial enzymes. The wood-degrading fungus Schizophyllum commune is both a genetically tractable model for studying mushroom development and a likely source of enzymes capable of efficient degradation of lignocellulosic biomass. Comparative analyses of its 38.5-megabase genome, which encodes 13,210 predicted genes, reveal the species\u27s unique wood-degrading machinery. One-third of the 471 genes predicted to encode transcription factors are differentially expressed during sexual development of S. commune. Whereas inactivation of one of these, fst4, prevented mushroom formation, inactivation of another, fst3, resulted in more, albeit smaller, mushrooms than in the wild-type fungus. Antisense transcripts may also have a role in the formation of fruiting bodies. Better insight into the mechanisms underlying mushroom formation should affect commercial production of mushrooms and their industrial use for producing enzymes and pharmaceuticals
Light and flow regimes regulate the metabolism of rivers
Mean annual temperature and mean annual precipitation drive much of the variation in productivity across Earth's terrestrial ecosystems but do not explain variation in gross primary productivity (GPP) or ecosystem respiration (ER) in flowing waters. We document substantial variation in the magnitude and seasonality of GPP and ER across 222 US rivers. In contrast to their terrestrial counterparts, most river ecosystems respire far more carbon than they fix and have less pronounced and consistent seasonality in their metabolic rates. We find that variation in annual solar energy inputs and stability of flows are the primary drivers of GPP and ER across rivers. A classification schema based on these drivers advances river science and informs management.We thank Ted Stets, Jordan Read, Tom Battin, Sophia
Bonjour, Marina Palta, and members of the Duke River Center for their help in
developing these ideas. This work was supported by grants from the NSF
1442439 (to E.S.B. and J.W.H.), 1834679 (to R.O.H.), 1442451 (to R.O.H.),
2019528 (to R.O.H. and J.R.B.), 1442140 (to M.C.), 1442451 (to A.M.H.),
1442467 (to E.H.S.), 1442522 (to N.B.G.), 1624807 (to N.B.G.), and US Geological
Survey funding for the working group was supported by the John Wesley
Power Center for Analysis and Synthesis. Phil Savoy contributed as a postdoc-
toral associate at Duke University and as a postdoctoral associate (contractor)
at the US Geological Survey
A Pre-mRNA–Associating Factor Links Endogenous siRNAs to Chromatin Regulation
In plants and fungi, small RNAs silence gene expression in the nucleus by establishing repressive chromatin states. The role of endogenous small RNAs in metazoan nuclei is largely unknown. Here we show that endogenous small interfering RNAs (endo-siRNAs) direct Histone H3 Lysine 9 methylation (H3K9me) in Caenorhabditis elegans. In addition, we report the identification and characterization of nuclear RNAi defective (nrde)-1 and nrde-4. Endo-siRNA–driven H3K9me requires the nuclear RNAi pathway including the Argonaute (Ago) NRDE-3, the conserved nuclear RNAi factor NRDE-2, as well as NRDE-1 and NRDE-4. Small RNAs direct NRDE-1 to associate with the pre-mRNA and chromatin of genes, which have been targeted by RNAi. NRDE-3 and NRDE-2 are required for the association of NRDE-1 with pre-mRNA and chromatin. NRDE-4 is required for NRDE-1/chromatin association, but not NRDE-1/pre-mRNA association. These data establish that NRDE-1 is a novel pre-mRNA and chromatin-associating factor that links small RNAs to H3K9 methylation. In addition, these results demonstrate that endo-siRNAs direct chromatin modifications via the Nrde pathway in C. elegans
JWST reveals a possible galaxy merger in triply-lensed MACS0647JD
MACS0647JD is a triply-lensed galaxy originally discovered with
the Hubble Space Telescope. Here we report new JWST imaging, which clearly
resolves MACS0647JD as having two components that are either merging
galaxies or stellar complexes within a single galaxy. Both are very small, with
stellar masses and radii . The brighter
larger component "A" is intrinsically very blue (), likely due
to very recent star formation and no dust, and is spatially extended with an
effective radius . The smaller component "B" appears redder
(), likely because it is older () with mild dust
extinction (), and a smaller radius . We
identify galaxies with similar colors in a high-redshift simulation, finding
their star formation histories to be out of phase. With an estimated stellar
mass ratio of roughly 2:1 and physical projected separation ,
we may be witnessing a galaxy merger 400 million years after the Big Bang. We
also identify a candidate companion galaxy C away, likely
destined to merge with galaxies A and B. The combined light from galaxies A+B
is magnified by factors of 8, 5, and 2 in three lensed images JD1, 2, and
3 with F356W fluxes , , (AB mag 25.1, 25.6, 26.6).
MACS0647JD is significantly brighter than other galaxies recently discovered
at similar redshifts with JWST. Without magnification, it would have AB mag
27.3 (). With a high confidence level, we obtain a photometric
redshift of based on photometry measured in 6 NIRCam filters
spanning , out to rest-frame. JWST NIRSpec
observations planned for January 2023 will deliver a spectroscopic redshift and
a more detailed study of the physical properties of MACS0647JD.Comment: 27 pages, 14 figures, submitted to Natur
Genome-wide association study of leprosy in Malawi and Mali
Leprosy is a chronic infection of the skin and peripheral nerves caused by Mycobacterium leprae. Despite recent improvements in disease control, leprosy remains an important cause of infectious disability globally. Large-scale genetic association studies in Chinese, Vietnamese and Indian populations have identified over 30 susceptibility loci for leprosy. There is a significant burden of leprosy in Africa, however it is uncertain whether the findings of published genetic association studies are generalizable to African populations. To address this, we conducted a genome-wide association study (GWAS) of leprosy in Malawian (327 cases, 436 controls) and Malian (247 cases, 368 controls) individuals. In that analysis, we replicated four risk loci previously reported in China, Vietnam and India; MHC Class I and II, LACC1 and SLC29A3. We further identified a novel leprosy susceptibility locus at 10q24 (rs2015583; combined p = 8.81 × 10-9; OR = 0.51 [95% CI 0.40 - 0.64]). Using publicly-available data we characterise regulatory activity at this locus, identifying ACTR1A as a candidate mediator of leprosy risk. This locus shows evidence of recent positive selection and demonstrates pleiotropy with established risk loci for inflammatory bowel disease and childhood-onset asthma. A shared genetic architecture for leprosy and inflammatory bowel disease has been previously described. We expand on this, strengthening the hypothesis that selection pressure driven by leprosy has shaped the evolution of autoimmune and atopic disease in modern populations. More broadly, our data highlights the importance of defining the genetic architecture of disease across genetically diverse populations, and that disease insights derived from GWAS in one population may not translate to all affected populations
Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions
Carbon dioxide (CO2) emissions to the atmosphere from running waters are estimated to be four times greater than the total carbon (C) flux to the oceans. However, these fluxes remain poorly constrained because of substantial spatial and temporal variability in dissolved CO2 concentrations. Using a global compilation of high-frequency CO2 measurements, we demonstrate that nocturnal CO2 emissions are on average 27% (0.9 gC m−2 d−1) greater than those estimated from diurnal concentrations alone. Constraints on light availability due to canopy shading or water colour are the principal controls on observed diel (24 hour) variation, suggesting this nocturnal increase arises from daytime fixation of CO2 by photosynthesis. Because current global estimates of CO2 emissions to the atmosphere from running waters (0.65–1.8 PgC yr−1) rely primarily on discrete measurements of dissolved CO2 obtained during the day, they substantially underestimate the magnitude of this flux. Accounting for night-time CO2 emissions may elevate global estimates from running waters to the atmosphere by 0.20–0.55 PgC yr−1
LEARN: A multi-centre, cross-sectional evaluation of Urology teaching in UK medical schools
OBJECTIVE: To evaluate the status of UK undergraduate urology teaching against the British Association of Urological Surgeons (BAUS) Undergraduate Syllabus for Urology. Secondary objectives included evaluating the type and quantity of teaching provided, the reported performance rate of General Medical Council (GMC)-mandated urological procedures, and the proportion of undergraduates considering urology as a career. MATERIALS AND METHODS: LEARN was a national multicentre cross-sectional study. Year 2 to Year 5 medical students and FY1 doctors were invited to complete a survey between 3rd October and 20th December 2020, retrospectively assessing the urology teaching received to date. Results are reported according to the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). RESULTS: 7,063/8,346 (84.6%) responses from all 39 UK medical schools were included; 1,127/7,063 (16.0%) were from Foundation Year (FY) 1 doctors, who reported that the most frequently taught topics in undergraduate training were on urinary tract infection (96.5%), acute kidney injury (95.9%) and haematuria (94.4%). The most infrequently taught topics were male urinary incontinence (59.4%), male infertility (52.4%) and erectile dysfunction (43.8%). Male and female catheterisation on patients as undergraduates was performed by 92.1% and 73.0% of FY1 doctors respectively, and 16.9% had considered a career in urology. Theory based teaching was mainly prevalent in the early years of medical school, with clinical skills teaching, and clinical placements in the later years of medical school. 20.1% of FY1 doctors reported no undergraduate clinical attachment in urology. CONCLUSION: LEARN is the largest ever evaluation of undergraduate urology teaching. In the UK, teaching seemed satisfactory as evaluated by the BAUS undergraduate syllabus. However, many students report having no clinical attachments in Urology and some newly qualified doctors report never having inserted a catheter, which is a GMC mandated requirement. We recommend a greater emphasis on undergraduate clinical exposure to urology and stricter adherence to GMC mandated procedures
Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine
Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine
- …