201 research outputs found

    Combining charcoal sediment and molecular markers to infer a Holocene fire history in the Maya Lowlands of Petén, Guatemala

    Get PDF
    Abstract Vegetation changes in the Maya Lowlands during the Holocene are a result of changing climate conditions, solely anthropogenic activities, or interactions of both factors. As a consequence, it is difficult to assess how tropical ecosystems will cope with projected changes in precipitation and land-use intensification over the next decades. We investigated the role of fire during the Holocene by combining macroscopic charcoal and the molecular fire proxies levoglucosan, mannosan and galactosan. Combining these two different fire proxies allows a more robust understanding of the complex history of fire regimes at different spatial scales during the Holocene. In order to infer changes in past biomass burning, we analysed a lake sediment core from Lake Peten Itza, Guatemala, and compared our results with millennial-scale vegetation and climate change available in the area. We detected three periods of high fire activity during the Holocene: 9500–6000 cal yr BP, 3700 cal yr BP and 2700 cal yr BP. We attribute the first maximum mostly to climate conditions and the last maximum to human activities. The rapid change between burned vegetation types at the 3700 cal yr BP fire maximum may result from human activity

    Late Holocene records of fire and human presence in New Zealand

    Get PDF
    New Zealand, and the South Island in particular, can be considered an excellent test site for the study of the\ud early impact of humans on the environment for two main reasons: the Polynesian settlement occurred only\ud about 700-800 y BP and resulted in abrupt and huge landscape modifications. Burning forest for land clearance\ud impacted dramatically on an ecosystem that was not adapted to fire, changing the composition of the vegetation\ud as documented by sedimentary charcoal and pollen records. Although charcoal data give incontrovertible\ud evidence of some unprecedented fire events right after the arrival of the Maori, its significance as a tracer for local\ud and anthropogenic fire events has been questioned, stressing the need for new markers to confirm and complete the information about human presence and its effective impact.\ud In the present work, faecal sterols and polycyclic aromatic hydrocarbons (PAHs) were individuated as suitable\ud molecular markers and analyzed by GC-MS in a sediment core from Lake Kirkpatrick, located in the Lake\ud Wakatipu catchment at 570 m a.s.l. in the South Island of New Zealand. Coprostanol accounts for about 60%\ud of total sterol content in human faeces, being much less relevant in animal dejections. Together with its\ud degradation product epi-coprostanol, it is well conserved in sedimentary archives and can be highly useful in\ud paleoenvironmental reconstructions of human settlements. PAHs are produced in relevant amounts by combustion in conditions of oxygen depletion, and diagnostic ratios (DR) between specific molecules can be used for inferring fuel and sources.\ud The charcoal record for Lake Kirkpatrick shows major fire episodes around AD 1350, confirmed by corresponding high levels of PAHs ascribable to biomass burning (as further evidenced by DR) at c. AD 1350. Moreover, the same trend is observed also in the fluxes of coprostanol and epi-coprostanol, whose sum results in two peaks at c. AD 1346 and 1351. This finding confirms not only the massive presence of humans in the area and the large use of fire at the time, but also complements and refines the reconstructions enabled by charcoal analysis

    Method for the determination of specific molecular markers of biomass burning in lake sediments

    Get PDF
    Fire has an influence on regional to global atmospheric chemistry and climate. Molecular markers of biomass burning archived in lake sediments are becoming increasingly important in paleoenvironmental reconstruction and may help determine the interaction between climate and fire activity. Here, we present a high performance anion exchange chromatography–mass spectrometry method to allow separation and analysis of levoglucosan, mannosan and galactosan in lake sediments, with implications for reconstructing past biomass burning events. Determining mannosan and galactosan in Lake Kirkpatrick, New Zealand (45.03°S, 168.57°E) sediment cores and comparing these isomers with the more abundant biomass burning markers levoglucosan and charcoal represents a significant advancement in our ability to analyze past fire activity. Levoglucosan, mannosan and galactosan concentrations correlated significantly with macroscopic charcoal concentration. Levoglucosan/mannosan and levoglucosan/(mannosan + galactosan) ratios may help determine not only when fires occurred, but also if changes in the primary burned vegetation occurred

    Composti organici idrosolubili come indicatori nello studio dei processi di scambio atmosfera-neve in Antartide

    Get PDF
    La frazione organica è un’importante componente dell’aerosol atmosferico e i composti organici idrosolubili costituiscono un 40-60% del carbonio organico presente in atmosfera. Tali composti hanno una grande importanza ambientale in quanto possono influenzare l’igroscopicità delle particelle di aerosol e conseguentemente l’abilità di agire come nuclei di condensazione delle nubi. I composti organici idrosolubili possono essere utilizzati come indicatori di specifiche sorgenti di emissione. Processi di trasporto a lunga distanza sono stati studiati utilizzando il levoglucosan, specifico indicatore di combustione di biomassa, [1], mentre la determinazione di amminoacidi e zuccheri nell’aerosol antartico ha permesso di investigare i processi di formazione e di trasformazione del bioaerosol [2,3]. L’Antartide rappresenta un ottimo laboratorio naturale perché risulta lontano da fonti antropogeniche ed emissioni continentali. In questo studio sono state analizzate diverse classi di composti idrosolubili quali amminoacidi, metossifenoli, mono- e disaccaridi, alcol zuccheri, anidrozuccheri, specie anioniche e cationiche e acidi carbossibili in campioni di aerosol atmosferico e neve superficiale raccolti presso il sito costiero di Campo Faraglione vicino alla Stazione Mario Zucchelli (Antartide) durante la XXX spedizione italiana antartica (estate australe 2014-2015). Il principale obiettivo di questo lavoro consiste nello studio dei processi di scambio atmosfera-neve al fine di individuare nuovi indicatori per lo studio delle carote di ghiaccio. La conoscenza dei processi di deposizione e di possibile degradazione delle specie chimiche nel manto nevoso è fondamentale per capire l’applicabilità di tali composti a studi paleoclimatici. Questo lavoro è stato finanziato dal Programma Nazionale di Ricerche in Antartide (PNRA) mediante il progetto “Scambi e relazioni aria-neve per elementi in tracce e composti organici di interesse climatico” (2013/AZ3.04). Bibliografia [1] R. Zangrando et al., (2016), Science of the Total Environment 544, 606–616. [2] E. Barbaro et al., (2015) Atmospheric Environment, 118, 134-144. [3] E. Barbaro et al., (2015) Atmospheric Chemistry and Physics, 15, 5457–5469

    Fire, vegetation, and Holocene climate in a southeastern Tibetan lake: A multi-biomarker reconstruction from Paru Co

    Get PDF
    The fire history of the Tibetan Plateau over centennial to millennial timescales is not well known. Recent ice core studies reconstruct fire history over the past few decades but do not extend through the Holocene. Lacustrine sedimentary cores, however, can provide continuous records of local environmental change on millennial scales during the Holocene through the accumulation and preservation of specific organic molecular biomarkers. To reconstruct Holocene fire events and vegetation changes occurring on the southeastern Tibetan Plateau and the surrounding areas, we used a multi-proxy approach, investigating multiple biomarkers preserved in core sediment samples retrieved from Paru Co, a small lake located in the Nyainqentanglha Mountains (29°47045.600N, 92°21007.200 E; 4845ma.s.l.). Biomarkers include n-alkanes as indicators of vegetation, polycyclic aromatic hydrocarbons (PAHs) as combustion proxies, fecal sterols and stanols (FeSts) as indicators of the presence of humans or grazing animals, and finally monosaccharide anhydrides (MAs) as specific markers of vegetation burning processes. Insolation changes and the associated influence on the Indian summer monsoon (ISM) affect the vegetation distribution and fire types recorded in Paru Co throughout the Holocene. The early Holocene (10.7- 7.5 cal kyr BP) n-alkane ratios demonstrate oscillations between grass and conifer communities, resulting in respective smouldering fires represented by levoglucosan peaks, and high-temperature fires represented by high-molecular-weight PAHs. Forest cover increases with a strengthened ISM, where coincident high levoglucosan to mannosan (L = M) ratios are consistent with conifer burning. The decrease in the ISM at 4.2 cal kyr BP corresponds with the expansion of regional civilizations, although the lack of human FeSts above the method detection limits excludes local anthropogenic influence on fire and vegetation changes. The late Holocene is characterized by a relatively shallow lake surrounded by grassland, where all biomarkers other than PAHs display only minor variations. The sum of PAHs steadily increases throughout the late Holocene, suggesting a net increase in local to regional combustion that is separate from vegetation and climate change

    Multi-biomarker analysis of sediments for paleoclimate research

    Get PDF
    Lacustrine sedimentary cores provide continuous records of large-scale and local environmental modifications, intelligible thanks to specific organic markers that accumulated in these archives during past millennia. In order to improve our knowledge on ecosystem changes due to biomass burning events and human presence during the Holocene, an effective analytical method to detect organic compounds contained in sediment samples is needed. We used Accelerated Solvent Extraction (ASE) technique followed by analysis with gas and liquid chromatographers coupled with mass spectrometers (GC-MS, IC-MS). The extraction of the molecules of interest from the sediments is made with a mixture of DCM:MeOH 9:1 v/v and it is followed by a 3 steps purification with silica gel columns. The first fraction is eluted with HEX:DCM 9:1 v/v and contains n-alkanes, indicators of vegetation, and polycyclic aromatic hydrocarbons (PAHs) as combustion proxies. Then, a second fraction is eluted with DCM and derivatized with the silylation process, in order to get the faecal sterols and stanols (FeSts), indicators of past human and grazing animals presence. These two fractions are analysed with the GC-MS technique. The third and last fraction is eluted with MeOH and contains the monosaccharide anhydrides (MAs), specific indicators of vegetation burning processes, which are analysed with IC-MS. Internal standards labelled C13 are used for the quantification and procedural blanks are extracted every batch of 12 samples. The method may undergo variations, on the basis of the complex sediment matrices which not always lend itself to the same kind of treatment. However, the technique was applied in different lakes from different continents and the obtained results, compared with historical and climate literature data, seem to demonstrate the potentiality of the method as a resourceful instrument to reconstruct past burning events and human-ecosystem interactions

    Fire, vegetation and Holocene climate in the south-eastern Tibetan Plateau: a multi-biomarker reconstruction from Paru Co

    Get PDF
    The fire history of the Tibetan Plateau over centennial to millennial timescales is still unknown. Recent ice core studies reconstruct fire history over the past few decades but do not extend through the Holocene. Lacustrine sedimentary cores, however, provide continuous records of large-scale and local environmental modifications due to their accumulation of specific organic molecular markers throughout the past millennia. In order to reconstruct Holocene fire events and vegetation changes occurring on the south-eastern Tibetan Plateau and the surrounding areas, we improved and integrated previous analytical methods. The multi-proxy procedure was applied to samples retrieved from Paru Co, a small lake located in the Nyainqentanglha Mountains (29°47'45.6"N; 92°21'07.2"E; 4845m a.s.l.). The investigated biomarkers include n-alkanes as indicators of vegetation, polycyclic aromatic hydrocarbons (PAHs) as combustion proxies, faecal sterols and stanols (FeSts) as indicators of the presence of humans or grazing animals and finally monosaccharide anhydrides (MAs) as specific markers of vegetation burning processes. Relatively high concentrations of both MAs and PAHs demonstrate intense local biomass burning activity during the early Holocene (10.9–10.7calky BP), which correspond to a drier climate following deglaciation. High concentrations of MAs but not PAHs between 10.7–9calky BP suggest a period of regional biomass burning followed by a decreasing fire trend through the mid-late Holocene. This fire history is consistent with local vegetation changes reconstructed from both n-alkanes and regional pollen records, where vegetation types depend on the centennial-scale intensity of monsoon precipitation. FeSts were below detection limits for most of the samples, suggesting limited direct human influences on fire regime and vegetation changes in the lake's catchment. Climate is the main influence on fire activity recorded in Paru Co over millennial timescales, where biomass burning fluctuates in response to alternating warm/humid and cool/dry periods

    Mutations in Bcl9 and Pygo genes cause congenital heart defects by tissue-specific perturbation of Wnt/β-catenin signaling

    Get PDF
    Bcl9 and Pygopus (Pygo) are obligate Wnt/β-catenin cofactors in Drosophila, yet their contribution to Wnt signaling during vertebrate development remains unresolved. Combining zebrafish and mouse genetics, we document a conserved, β-catenin-associated function for BCL9 and Pygo proteins during vertebrate heart development. Disrupting the β-catenin–BCL9–Pygo complex results in a broadly maintained canonical Wnt response yet perturbs heart development and proper expression of key cardiac regulators. Our work highlights BCL9 and Pygo as selective β-catenin cofactors in a subset of canonical Wnt responses during vertebrate development. Moreover, our results implicate alterations in BCL9 and BCL9L in human congenital heart defects

    Late Holocene records of fire and human presence in New Zealand

    Get PDF
    New Zealand, and the South Island in particular, can be considered an excellent test site for the study of the early impact of humans on the environment for two main reasons: the Polynesian settlement occurred only about 700-800 y BP and resulted in abrupt and huge landscape modifications. Burning forest for land clearance impacted dramatically on an ecosystem that was not adapted to fire, changing the composition of the vegetation as documented by sedimentary charcoal and pollen records. Although charcoal data give incontrovertible evidence of some unprecedented fire events right after the arrival of the Maori, its significance as a tracer for local and anthropogenic fire events has been questioned, stressing the need for new markers to confirm and complete the information about human presence and its effective impact. In the present work, faecal sterols and polycyclic aromatic hydrocarbons (PAHs) were individuated as suitable molecular markers and analyzed by GC-MS in a sediment core from Lake Kirkpatrick, located in the Lake Wakatipu catchment at 570 m a.s.l. in the South Island of New Zealand. Coprostanol accounts for about 60% of total sterol content in human faeces, being much less relevant in animal dejections. Together with its degradation product epi-coprostanol, it is well conserved in sedimentary archives and can be highly useful in paleoenvironmental reconstructions of human settlements. PAHs are produced in relevant amounts by combustion in conditions of oxygen depletion, and diagnostic ratios (DR) between specific molecules can be used for inferring fuel and sources. The charcoal record for Lake Kirkpatrick shows major fire episodes around AD 1350, confirmed by corresponding high levels of PAHs ascribable to biomass burning (as further evidenced by DR) at c. AD 1350. Moreover, the same trend is observed also in the fluxes of coprostanol and epi-coprostanol, whose sum results in two peaks at c. AD 1346 and 1351. This finding confirms not only the massive presence of humans in the area and the large use of fire at the time, but also complements and refines the reconstructions enabled by charcoal analysis

    Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs)

    Get PDF
    In this discussion paper, the transition from long-chain poly- and perfluorinated alkyl substances (PFASs) to fluorinated alternatives is addressed. Long-chain PFASs include perfluoroalkyl carboxylic acids (PFCAs) with 7 or more perfluorinated carbons, perfluoroalkyl sulfonic acids (PFSAs) with 6 or more perfluorinated carbons, and their precursors. Because long-chain PFASs have been found to be persistent, bioaccumulative and toxic, they are being replaced by a wide range of fluorinated alternatives. We summarize key concerns about the potential impacts of fluorinated alternatives on human health and the environment in order to provide concise information for different stakeholders and the public. These concerns include, amongst others, the likelihood of fluorinated alternatives or their transformation products becoming ubiquitously present in the global environment; the need for more information on uses, properties and effects of fluorinated alternatives; the formation of persistent terminal transformation products including PFCAs and PFSAs; increasing environmental and human exposure and potential of adverse effects as a consequence of the high ultimate persistence and increasing usage of fluorinated alternatives; the high societal costs that would be caused if the uses, environmental fate, and adverse effects of fluorinated alternatives had to be investigated by publicly funded research; and the lack of consideration of non-persistent alternatives to long-chain PFASs
    • …
    corecore