552 research outputs found

    Integration of space and in-situ observations to study atmosphere, ocean and land processes

    Get PDF
    A research investigation was conducted into the possibility of using atmospheric observations made in the past from both terrestrial and space-based platforms to create a global, coherent four dimensional analysis for the purpose of studying atmospheric, oceanic, and land surface processes relevant to climate simulation, monitoring, and change. This investigation consisted of the following tasks: (1) a mature global data assimilation system was obtained from the National Meteorological Center and modified for use on a Cray X-MP computer system; (2) atmospheric observations for the period 20 Nov. 1982 through 1 Mar. 1983, including rawinsonde soundings, aircraft-based measurements, pilot balloons, and temperature soundings from polar orbiting satellites were obtained from several sources; and (3) the global data assimilation system was used to reassimilate the atmospheric observations to produce a new atmospheric analysis which was then compared with the contemporaneous analysis. The global hydrologic cycle, including fluxes between the atmosphere and both the land and ocean surfaces, was estimated. The flux of water from the ocean surface into the atmosphere, its transport in the form of latent heat to remote regions, and its return to the surface in the form of precipitation were estimated globally. In addition, several regional budgets for selected tropical oceanic and extratropical continental areas were also done

    Implementing the Simple Biosphere Model (SiB) in a general circulation model: Methodologies and results

    Get PDF
    The Simple Biosphere MOdel (SiB) of Sellers et al., (1986) was designed to simulate the interactions between the Earth's land surface and the atmosphere by treating the vegetation explicitly and relistically, thereby incorporating biophysical controls on the exchanges of radiation, momentum, sensible and latent heat between the two systems. The steps taken to implement SiB in a modified version of the National Meteorological Center's spectral GCM are described. The coupled model (SiB-GCM) was used with a conventional hydrological model (Ctl-GCM) to produce summer and winter simulations. The same GCM was used with a conventional hydrological model (Ctl-GCM) to produce comparable 'control' summer and winter variations. It was found that SiB-GCM produced a more realistic partitioning of energy at the land surface than Ctl-GCM. Generally, SiB-GCM produced more sensible heat flux and less latent heat flux over vegetated land than did Ctl-GCM and this resulted in the development of a much deeper daytime planetary boundary and reduced precipitation rates over the continents in SiB-GCM. In the summer simulation, the 200 mb jet stream and the wind speed at 850 mb were slightly weakened in the SiB-GCM relative to the Ctl-GCM results and equivalent analyses from observations

    An Evaluation of the Apparent Interdecadal Shift in the Tropical Divergent Circulation in the NCEP-NCAR Reanalysis

    Get PDF
    ABSTRACT Recent decadal regime shifts in the large-scale circulation of the tropical atmosphere are examined using analyses and independent observations of the circulation and precipitation. Comparisons between reanalysis products and independent observations suggest that the shifts that are apparent and significant in the reanalysis products may be artifacts of changes in the observing system and/or the data assimilation procedures

    Identification of plant-derived alkaloids with therapeutic potential for myotonic dystrophy type I

    Get PDF
    Myotonic dystrophy type I (DM1) is a disabling neuromuscular disease with no causal treatment available. This disease is caused by expanded CTG trinucleotide repeats in the 3 UTR of the dystrophia myotonica protein kinase gene. On the RNA level, expanded (CUG)n repeats form hairpin structures that sequester splicing factors such as muscleblind-like 1 (MBNL1). Lack of availableMBNL1leads to misregulated alternative splicing of many target pre-mRNAs, leading to the multisystemic symptoms in DM1. Many studies aiming to identify small molecules that target the (CUG)n-MBNL1 complex focused on synthetic molecules. In an effort to identify new small molecules that liberate sequesteredMBNL1from (CUG)n RNA, we focused specifically on small molecules of natural origin. Natural products remain an important source for drugs and play a significant role in providing novel leads and pharmacophores for medicinal chemistry. In a new DM1 mechanism-based biochemical assay, we screened a collection of isolated natural compounds and a library of over 2100 extracts from plants and fungal strains. HPLC-based activity profiling in combination with spectroscopic methods were used to identify the active principles in the extracts. The bioactivity of the identified compounds was investigated in a human cell model and in a mouse model of DM1.We identified several alkaloids, including the -carboline harmine and the isoquinoline berberine, that ameliorated certain aspects of theDM1pathology in these models. Alkaloids as a compound class may have potential for drug discovery in other RNA-mediated diseases

    Observed Changes in the Lifetime and Amplitude of the Madden–Julian Oscillation Associated with Interannual ENSO Sea Surface Temperature Anomalies

    Get PDF
    The Madden-Julian Oscillation (MJO) is analysed using the reanalysis zonal wind and satellite outgoing longwave radiation-based indices of Wheeler and Hendon for the 1974-2005 period. The average life time of MJO events varies with season, being 36 days for events whose central date occurs in December, and 48 days for events in September. The life time of the MJO in the equinoctial seasons (March-May and October-December) is also dependent on the state of the El Nino-Southern Oscillation (ENSO). During October-December it is only 32 days under El Nino conditions, increasing to 48 days under La Nina conditions, with similar values in northern spring. This difference is due to faster eastward propagation of the MJO convective anomalies through the Maritime Continent and western Pacific during El Nino, consistent with theoretical arguments concerning equatorial wave speeds. The analysis is extended back to 1950 by using an alternative definition of the MJO based on just the zonal wind component of the Wheeler and Hendon indices. A rupture in the amplitude of the MJO is found in 1975, at the same time as the well known rupture in the ENSO time series, that has been associated with the Pacific Decadal Oscillation. The mean amplitude of the MJO is 16% larger in the post-rupture period (1976-2005) compared to the pre-rupture period (1950-1975). Before the 1975 rupture, the amplitude of the MJO is a maximum (minimum) under El Nino (La Nina) conditions during northern winter, and a minimum (maximum) under El Nino (La Nina) conditions during northern summer. After the rupture, this relationship disappears. When the MJO-ENSO relationship is analysed using all year round data, or a shorter data set, as in some previous studies, no relationship is found

    The CLIVAR C20C Project: Which components of the Asian-Australian monsoon circulation variations are forced and reproducible?

    Get PDF
    A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950-1999 is studied to identify and understand which components of the Asian-Australian monsoon (A-AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A-AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A-AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June-July-August SSTs in the equatorial eastern Pacific in recent decades. Among the A-AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A-AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices

    Elevated phospholipid hydroperoxide glutathione peroxidase (GPX4) expression modulates oxylipin formation and inhibits age-related skeletal muscle atrophy and weakness

    Get PDF
    Our previous studies support a key role for mitochondrial lipid hydroperoxides as important contributors to denervation-related muscle atrophy, including muscle atrophy associated with aging. Phospholipid hydroperoxide glutathione peroxidase 4 (GPX4) is an essential antioxidant enzyme that directly reduces phospholipid hydroperoxides and we previously reported that denervation-induced muscle atrophy is blunted in a mouse model of GPX4 overexpression. Therefore, the goal of the present study was to determine whether GPX4 overexpression can reduce the age-related increase in mitochondrial hydroperoxides in skeletal muscle and ameliorate age-related muscle atrophy and weakness (sarcopenia). Male C57Bl6 WT and GPX4 transgenic (GPX4Tg) mice were studied at 3 to 5 and 23–29 months of age. Basal mitochondrial peroxide generation was reduced by 34% in muscle fibers from aged GPX4Tg compared to old WT mice. GPX4 overexpression also reduced levels of lipid peroxidation products: 4-HNE, MDA, and LOOHs by 38%, 32%, and 84% respectively in aged GPX4Tg mice compared to aged WT mice. Muscle mass was preserved in old GPX4 Tg mice by 11% and specific force generation was 21% higher in old GPX4Tg versus age matched male WT mice. Oxylipins from lipoxygenases (LOX) and cyclooxygenase (COX), as well as less abundant non-enzymatically generated isomers, were significantly reduced by GPX4 overexpression. The expression of cPLA2, 12/15-LOX and COX-2 were 1.9-, 10.5- and 3.4-fold greater in old versus young WT muscle respectively, and 12/15-LOX and COX-2 levels were reduced by 37% and 35%, respectively in muscle from old GPX4Tg mice. Our study suggests that lipid peroxidation products may play an important role in the development of sarcopenia, and their detoxification might be an effective intervention in preventing muscle atrophy

    The CLIVAR C20C Project: Which components of the Asian-Australian monsoon circulation variations are forced and reproducible?

    Get PDF
    A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950–1999 is studied to identify and understand which components of the Asian–Australian monsoon (A–AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A–AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A–AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June–July–August SSTs in the equatorial eastern Pacific in recent decades. Among the A–AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A–AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices
    • …
    corecore