Integration of space and in-situ observations to study atmosphere, ocean and land processes

Abstract

A research investigation was conducted into the possibility of using atmospheric observations made in the past from both terrestrial and space-based platforms to create a global, coherent four dimensional analysis for the purpose of studying atmospheric, oceanic, and land surface processes relevant to climate simulation, monitoring, and change. This investigation consisted of the following tasks: (1) a mature global data assimilation system was obtained from the National Meteorological Center and modified for use on a Cray X-MP computer system; (2) atmospheric observations for the period 20 Nov. 1982 through 1 Mar. 1983, including rawinsonde soundings, aircraft-based measurements, pilot balloons, and temperature soundings from polar orbiting satellites were obtained from several sources; and (3) the global data assimilation system was used to reassimilate the atmospheric observations to produce a new atmospheric analysis which was then compared with the contemporaneous analysis. The global hydrologic cycle, including fluxes between the atmosphere and both the land and ocean surfaces, was estimated. The flux of water from the ocean surface into the atmosphere, its transport in the form of latent heat to remote regions, and its return to the surface in the form of precipitation were estimated globally. In addition, several regional budgets for selected tropical oceanic and extratropical continental areas were also done

    Similar works