104 research outputs found

    GPS phase scintillation associated with optical auroral emissions:first statistical results from the geographic South Pole

    Get PDF
    Ionospheric irregularities affect the propagation of Global Navigation Satellite System (GNSS) signals, causing radio scintillation. Particle precipitation from the magnetosphere into the ionosphere, following solar activity, is an important production mechanism for ionospheric irregularities. Particle precipitation also causes the aurorae. However, the correlation of aurorae and GNSS scintillation events is not well established in literature. This study examines optical auroral events during 2010-2011 and reports spatial and temporal correlations with Global Positioning System (GPS) L1 phase fluctuations using instrumentation located at South Pole Station. An all-sky imager provides a measure of optical emission intensities ([OI] 557.7nm and 630.0nm) at auroral latitudes during the winter months. A collocated GPS antenna and scintillation receiver facilitates superimposition of auroral images and GPS signal measurements. Correlation statistics are produced by tracking emission intensities and GPS L1 sigma indices at E and F-region heights. This is the first time that multi-wavelength auroral images have been compared with scintillation measurements in this way. Correlation levels of up to 74% are observed during 2-3hour periods of discrete arc structuring. Analysis revealed that higher values of emission intensity corresponded with elevated levels of sigma. The study has yielded the first statistical evidence supporting the previously assumed relationship between the aurorae and GPS signal propagation. The probability of scintillation-induced GPS outages is of interest for commercial and safety-critical operations at high latitudes. Results in this paper indicate that image databases of optical auroral emissions could be used to assess the likelihood of multiple satellite scintillation activity

    Decision-making of English Netball Superleague umpires: Contextual and dispositional influences

    Get PDF
    Objectives. The decisions made by officials have a direct bearing on the outcomes of competitive sport contests. In an exploratory study, we examine the interrelationships between the decisions made by elite netball umpires, the potential contextual and environmental influences (e.g., crowd size), and the umpires’ dispositional tendencies – specifically, their propensity to deliberate and ruminate on their decisions. Design/Method. Filmed footage from 60 England Netball Superleague matches was coded using performance analysis software. We measured the number of decisions made overall, and for home and away teams; league position; competition round; match quarter; and crowd size. Additionally, 10 umpires who officiated in the matches completed the Decision-Specific Reinvestment Scale (DSRS). Results. Regression analyses predicted that as home teams’ league position improved the number of decisions against away teams increased. A model comprising competition round and average league position of both teams predicted the number of decisions made in matches, but neither variable emerged as a significant predictor. The umpire analyses revealed that greater crowd size was associated with an increase in decisions against away teams. The Decision Rumination factor was strongly negatively related to the number of decisions in Quarters 1 and 3, this relationship was driven by fewer decisions against home teams by umpires who exhibited higher Rumination subscale scores. Conclusions. These findings strengthen our understanding of contextual, environmental, and dispositional influences on umpires’ decision-making behaviour. The tendency to ruminate upon decisions may explain the changes in decision behaviour in relation to the home team advantage effect

    Factors affecting decision-making in Gaelic Football: a focus group approach

    Get PDF
    ObjectivesResearch examining decision-making in sports has predominantly used experimental approaches that fail to provide a holistic understanding of the various factors that impact the decision-making process. The current study aimed to explore the decision-making processes of Senior (expert) and Academy (near-expert) Gaelic Football players using a focus group approach.MethodsFour focus groups were conducted; two with Senior players (n = 5; n = 6) and two with U17 Academy players (n = 5; n = 6). In each focus group, short video clips of Senior Gaelic football games were played, and the action was paused at key moments. The group then discussed the options available to the player in possession, the decision they would make in that situation, and importantly, what factors influenced the final decision. Thematic analysis was used to identify themes that emerged from the focus groups.Results and discussionFour primary themes emerged that affected the decision-making process. Three themes were related to information sources, namely, pre-match context (coach tactics and instructions, match importance, and opposition status), current match context (score and time remaining), and visual information (player positioning and field space, and visual search strategy), and the fourth theme related to individual differences (self-efficacy, risk propensity, perceived pressure, physical characteristics, action capabilities, fatigue) that moderated the decision-making process. Compared to the near-expert Academy players, the expert Senior players displayed a more sophisticated understanding of the various sources of information and were able to integrate them in a more complex manner to make projections regarding future scenarios. For both groups, the decision-making process was moderated by individual differences. A schematic has been developed based on the study findings in an attempt to illustrate the hypothesized decision-making process

    Interhemispheric comparison of GPS phase scintillation at high latitudes during the magnetic-cloud-induced geomagnetic storm of 5–7 April 2010

    Get PDF
    Arrays of GPS Ionospheric Scintillation and TEC Monitors (GISTMs) are used in a comparative scintillation study focusing on quasi-conjugate pairs of GPS receivers in the Arctic and Antarctic. Intense GPS phase scintillation and rapid variations in ionospheric total electron content (TEC) that can result in cycle slips were observed at high latitudes with dual-frequency GPS receivers during the first significant geomagnetic storm of solar cycle 24 on 5–7 April 2010. The impact of a bipolar magnetic cloud of north-south (NS) type embedded in high speed solar wind from a coronal hole caused a geomagnetic storm with maximum 3-hourly Kp = 8- and hourly ring current Dst =−73 nT. The interhemispheric comparison of phase scintillation reveals similarities but also asymmetries of the ionospheric response in the northern and southern auroral zones, cusps and polar caps. In the nightside auroral oval and in the cusp/cleft sectors the phase scintillation was observed in both hemispheres at about the same times and was correlated with geomagnetic activity. The scintillation level was very similar in approximately conjugate locations in Qiqiktarjuaq (75.4° N; 23.4° E CGM lat. and lon.) and South Pole (74.1° S; 18.9° E), in Longyearbyen (75.3° N; 111.2° E) and Zhongshan (74.7° S; 96.7° E), while it was significantly higher in Cambridge Bay (77.0° N; 310.1° E) than at Mario Zucchelli (80.0° S; 307.7° E). In the polar cap, when the interplanetary magnetic field (IMF) was strongly northward, the ionization due to energetic particle precipitation was a likely cause of scintillation that was stronger at Concordia (88.8° S; 54.4° E) in the dark ionosphere than in the sunlit ionosphere over Eureka (88.1° N; 333.4° E), due to a difference in ionospheric conductivity. When the IMF tilted southward, weak or no significant scintillation was detected in the northern polar cap, while in the southern polar cap rapidly varying TEC and strong phase scintillation persisted for many hours. This interhemispheric asymmetry is explained by the difference in the location of solar terminator relative to the cusps in the Northern and Southern Hemisphere. Solar terminator was in the immediate proximity of the cusp in the Southern Hemisphere where sunlit ionospheric plasma was readily convected into the central polar cap and a long series of patches was observed. In contrast, solar terminator was far poleward of the northern cusp thus reducing the entry of sunlit plasma and formation of dense patches. This is consistent with the observed and modeled seasonal variation in occurrence of polar cap patches. The GPS scintillation and TEC data analysis is supported by data from ground-based networks of magnetometers, riometers, ionosondes, HF radars and all-sky imagers, as well as particle flux measurements by DMSP satellites

    Families of patients in ICU: A Scoping review of their needs and satisfaction with care

    Get PDF
    Aim To describe published literature on the needs and experiences of family members of adults admitted to intensive care and interventions to improve family satisfaction and psychological well‐being and health. Design Scoping review. Methods Several selective databases were searched. English‐language articles were retrieved, and data extracted on study design, sample size, sample characteristics and outcomes measured. Results From 469 references, 43 studies were identified for inclusion. Four key themes were identified: (a) Different perspectives on meeting family needs; (b) Family satisfaction with care in intensive care; (c) Factors having an impact on family health and well‐being and their capacity to cope; and (d) Psychosocial interventions. Unmet informational and assurance needs have an impact on family satisfaction and mental health. Structured written and oral information shows some effect in improving satisfaction and reducing psychological burden. Future research might include family in the design of interventions, provide details of the implementation process and have clearly identified outcomes

    An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite

    Get PDF
    The global positioning system (GPS) phase scintillation caused by highlatitude ionospheric irregularities during an intense high-speed stream (HSS) of the solar wind from April 29 to May 5, 2011, was observed using arrays of GPS ionospheric scintillation and total electron content monitors in the Arctic and Antarctica. The one-minute phase-scintillation index derived from the data sampled at 50 Hz was complemented by a proxy index (delta phase rate) obtained from 1-Hz GPS data. The scintillation occurrence coincided with the aurora borealis and aurora australis observed by an all-sky imager at the South Pole, and by special sensor ultraviolet scanning imagers on board satellites of the Defense Meteorological Satellites Program. The South Pole (SP) station is approximately conjugate with two Canadian High Arctic Ionospheric Network stations on Baffin Island, Canada, which provided the opportunity to study magnetic conjugacy of scintillation with support of riometers and magnetometers. The GPS ionospheric pierce points were mapped at their actual or conjugate locations, along with the auroral emission over the South Pole, assuming an altitude of 120 km. As the aurora brightened and/or drifted across the field of view of the all-sky imager, sequences of scintillation events were observed that indicated conjugate auroras as a locator of simultaneous or delayed bipolar scintillation events. In spite of the greater scintillation intensity in the auroral oval, where phase scintillation sometimes exceeded 1 radian during the auroral break-up and substorms, the percentage occurrence of moderate scintillation was highest in the cusp. Interhemispheric comparisons of bipolar scintillation maps show that the scintillation occurrence is significantly higher in the southern cusp and polar cap

    Decision-making of English Netball Superleague umpires: contextual and dispositional influences

    Get PDF
    Objectives: The decisions made by officials have a direct bearing on the outcomes of competitive sport contests. In an exploratory study, we examine the interrelationships between the decisions made by elite netball umpires, the potential contextual and environmental influences (e.g., crowd size), and the umpires' dispositional tendencies – specifically, their propensity to deliberate and ruminate on their decisions. Design/Method: Filmed footage from 60 England Netball Superleague matches was coded using performance analysis software. We measured the number of decisions made overall, and for home and away teams; league position; competition round; match quarter; and crowd size. Additionally, 10 umpires who officiated in the matches completed the Decision-Specific Reinvestment Scale (DSRS). Results: Regression analyses predicted that as home teams' league position improved the number of decisions against away teams increased. A model comprising competition round and average league position of both teams predicted the number of decisions made in matches, but neither variable emerged as a significant predictor. The umpire analyses revealed that greater crowd size was associated with an increase in decisions against away teams. The Decision Rumination factor was strongly negatively related to the number of decisions in Quarters 1 and 3, this relationship was driven by fewer decisions against home teams by umpires who exhibited higher Rumination subscale scores. Conclusions: These findings strengthen our understanding of contextual, environmental, and dispositional influences on umpires' decision-making behaviour. The tendency to ruminate upon decisions may explain the changes in decision behaviour in relation to the home team advantage effect

    Saturn's open‐closed field line boundary:a Cassini electron survey at Saturn's magnetosphere

    Get PDF
    We investigate the average configuration and structure of Saturn's magnetosphere in the nightside equatorial and high‐latitude regions. Electron data from the Cassini Plasma Spectrometer's Electron Spectrometer (CAPS‐ELS) is processed to produce a signal‐to‐noise ratio for the entire CAPS‐ELS time of operation at Saturn's magnetosphere. We investigate where the signal‐to‐noise ratio falls below 1, to identify regions in the magnetosphere where there is a significant depletion in the electron content. In the nightside equatorial region we use this to find that the most planetward reconnection x‐line location is at 20 – 25 RS downtail from the planet in the midnight to dawn sector. We also find an equatorial dawn‐dusk asymmetry at a radial distance of >20 RS which may indicate the presence of plasma depleted flux tubes returning to the dayside after reconnection in the tail. Furthermore, we find that the high‐latitude magnetosphere is predominantly in a state of constant plasma depletion and located on open field lines. We map the region of high‐latitude magnetosphere that is depleted of electrons to the polar cap to estimate the size and open flux content within the polar caps. The mean open flux content for the northern and southern polar caps are found to be 25±5 and 32±5 GWb, respectively. The average location of the open‐closed field boundary is found at invariant colatitudes of 12.7±0.6° and 14.5±0.6°. The northern boundary is modulated by planetary period oscillations more than the southern boundary

    The dynamics of Saturn's main aurorae

    Get PDF
    Saturn's main aurorae are thought to be generated by plasma flow shears associated with a gradient in angular plasma velocity in the outer magnetosphere. Dungey cycle convection across the polar cap, in combination with rotational flow, may maximize (minimize) this flow shear at dawn (dusk) under strong solar wind driving. Using imagery from Cassini's Ultraviolet Imaging Spectrograph, we surprisingly find no related asymmetry in auroral power but demonstrate that the previously observed “dawn arc” is a signature of quasiperiodic auroral plasma injections commencing near dawn, which seem to be transient signatures of magnetotail reconnection and not part of the static main aurorae. We conclude that direct Dungey cycle driving in Saturn's magnetosphere is small compared to internal driving under usual conditions. Saturn's large‐scale auroral dynamics hence seem predominantly controlled by internal plasma loading, with plasma release in the magnetotail being triggered both internally through planetary period oscillation effects and externally through solar wind compressions
    • 

    corecore