9,941 research outputs found

    Nonlocality of Kohn-Sham exchange-correlation fields in dielectrics

    Full text link
    The theory of the macroscopic field appearing in the Kohn-Sham exchange-correlation potential for dielectric materials, as introduced by Gonze, Ghosez and Godby, is reexamined. It is shown that this Kohn-Sham field cannot be determined from a knowledge of the local state of the material (local crystal potential, electric field, and polarization) alone. Instead, it has an intrinsically nonlocal dependence on the global electrostatic configuration. For example, it vanishes in simple transverse configurations of a polarized dielectric, but not in longitudinal ones.Comment: 4 pages, two-column style with 2 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#dv_gg

    Hydrolytic Degradation of Polylactic Acid Fibers as a Function of pH and Exposure Time

    Get PDF
    Polylactic acid (PLA) is a widely used bioresorbable polymer in medical devices owing to its biocompatibility, bioresorbability, and biodegradability. It is also considered a sustainable solution for a wide variety of other applications, including packaging. Because of its widespread use, there have been many studies evaluating this polymer. However, gaps still exist in our understanding of the hydrolytic degradation in extreme pH environments and its impact on physical and mechanical properties, especially in fibrous materials. The goal of this work is to explore the hydrolytic degradation of PLA fibers as a function of a wide range of pH values and exposure times. To complement the experimental measurements, molecular-level details were obtained using both molecular dynamics (MD) simulations with ReaxFF and density functional theory (DFT) calculations. The hydrolytic degradation of PLA fibers from both experiments and simulations was observed to have a faster rate of degradation in alkaline conditions, with 40% of strength loss of the fibers in just 25 days together with an increase in the percent crystallinity of the degraded samples. Additionally, surface erosion was observed in these PLA fibers, especially in extreme alkaline environments, in contrast to bulk erosion observed in molded PLA grafts and other materials, which is attributed to the increased crystallinity induced during the fiber spinning process. These results indicate that spun PLA fibers function in a predictable manner as a bioresorbable medical device when totally degraded at end-of-life in more alkaline conditions

    A Tumbling Top-Quark Condensate Model

    Full text link
    We propose a renormalizable model with no fundamental scalars which breaks itself in the manner of a "tumbling" gauge theory down to the standard model with a top-quark condensate. Because of anomaly cancellation requirements, this model contains two color sextet fermions (quixes), which are vector-like with respect to the standard model gauge group. The model also has a large number of pseudo-Nambu-Goldstone bosons, some of which can be light. The top-quark condensate is responsible for breaking the electroweak gauge symmetry and gives the top quark a large mass. We discuss the qualitative features and instructive shortcomings of the model in its present form. We also show that this model can be naturally embedded into an aesthetically pleasing model in which the standard model fermion families appear symmetrically.Comment: 16 pages. v2: TeX formatting fixed, no other change

    Alpha particle production by molecular single-particle effect in reactions of 9^{9}Be just above the Coulomb barrier

    Full text link
    The α\alpha -particle production in the dissociation of 9^{9}Be on 209^{209}Bi and 64^{64}Zn at energies just above the Coulomb barrier is studied within the two-center shell model approach. The dissociation of 9^{9}Be on 209^{209}Bi is caused by a molecular single-particle effect (Landau-Zener mechanism) before the nuclei reach the Coulomb barrier. Molecular single-particle effects do not occur at that stage of the collision for 9^{9}Be+64^{64}Zn, and this explains the absence of fusion suppression observed for this system. The polarisation of the energy level of the last neutron of 9^{9}Be and, therefore the existence of avoided crossings with that level, depends on the structure of the target.Comment: 5 pages, 4 figure

    Density-Polarization Functional Theory of the response of a periodic insulating solid to an electric field.

    Get PDF
    The response of an infinite, periodic, insulating, solid to an infinitesimally small electric field is investigated in the framework of Density Functional Theory. We find that the applied perturbing potential is not a unique functional of the periodic density change~: it depends also on the change in the macroscopic {\em polarization}. Moreover, the dependence of the exchange-correlation energy on polarization induces an exchange-correlation electric field. These effects are exhibited for a model semiconductor. We also show that the scissor-operator technique is an approximate way of bypassing this polarization dependence.Comment: 11 pages, 1 Fig

    Universality of low-energy scattering in (2+1) dimensions

    Get PDF
    We prove that, in (2+1) dimensions, the S-wave phase shift, δ0(k) \delta_0(k), k being the c.m. momentum, vanishes as either δ0cln(k/m)orδ0O(k2)\delta_0 \to {c\over \ln (k/m)} or \delta_0 \to O(k^2) as k0k\to 0. The constant cc is universal and c=π/2c=\pi/2. This result is established first in the framework of the Schr\"odinger equation for a large class of potentials, second for a massive field theory from proved analyticity and unitarity, and, finally, we look at perturbation theory in ϕ34\phi_3^4 and study its relation to our non-perturbative result. The remarkable fact here is that in n-th order the perturbative amplitude diverges like (lnk)n(\ln k)^n as k0k\to 0, while the full amplitude vanishes as (lnk)1(\ln k)^{-1}. We show how these two facts can be reconciled.Comment: 23 pages, Late

    Amplification by stochastic interference

    Full text link
    A new method is introduced to obtain a strong signal by the interference of weak signals in noisy channels. The method is based on the interference of 1/f noise from parallel channels. One realization of stochastic interference is the auditory nervous system. Stochastic interference may have broad potential applications in the information transmission by parallel noisy channels

    Structural Design, Fabrication and Evaluation of Resorbable Fiber-Based Tissue Engineering Scaffolds

    Get PDF
    The use of tissue engineering to regenerate viable tissue relies on selecting the appropriate cell line, developing a resorbable scaffold and optimizing the culture conditions including the use of biomolecular cues and sometimes mechanical stimulation. This review of the literature focuses on the required scaffold properties, including the polymer material, the structural design, the total porosity, pore size distribution, mechanical performance, physical integrity in multiphase structures as well as surface morphology, rate of resorption and biocompatibility. The chapter will explain the unique advantages of using textile technologies for tissue engineering scaffold fabrication, and will delineate the differences in design, fabrication and performance of woven, warp and weft knitted, braided, nonwoven and electrospun scaffolds. In addition, it will explain how different types of tissues can be regenerated by each textile technology for a particular clinical application. The use of different synthetic and natural resorbable polymer fibers will be discussed, as well as the need for specialized finishing techniques such as heat setting, cross linking, coating and impregnation, depending on the tissue engineering application
    corecore