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ABSTRACT

We prove that, in (2+1) dimensions, the S-wave phase shift, δ0(k), k being the c.m.
momentum, vanishes as either

δ0 →
c

ln(k/m)
or δ0 → O(k2)

as k → 0. The constant c is universal and c = π/2. This result is established first in the
framework of the Schrödinger equation for a large class of potentials, second for a massive field
theory from proved analyticity and unitarity, and, finally, we look at perturbation theory in
φ4

3 and study its relation to our non-perturbative result. The remarkable fact here is that in
n-th order the perturbative amplitude diverges like (ln k)n as k → 0, while the full amplitude
vanishes as (ln k)−1. We show how these two facts can be reconciled.
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1. INTRODUCTION

Quantum field theories in 2+1 dimensions provide us with a useful field of investigation not only
for theoretical and mathematical issues, but also in some cases for actual physical problems.
Scattering in 2+1 dimensions has the advantage of resembling scattering in 3+1 dimensions
much more than 1+1 dimensions in the sense that the scattering amplitude depends on two
variables and that, also, the scattering matrix is non-trivial only if production processes exist.
As we shall see in Section 3, the analyticity-unitarity programme follows the same lines as in
3+1 dimensions. On the other hand, a non-trivial λφ4 massive field theory can be constructed
in 2+1 dimensions [1]. Another merit of two space dimensions is that it covers situations
occurring in condensed matter physics.

A remarkable property, which is completely different from what happens in 3+1 dimensions
is the threshold behaviour of the scattering amplitude. If δ0 is the S wave phase shift, then, as
k → 0 either

δ0 ∼
π

2 ln k
(1.1)

or
δ0 = 0(k2) (1.2)

In this paper we prove this result in three situations:

i) in the framework of the Schrödinger equation for a very large class of potentials under
conditions which will be specified in Section 2 and which are presumably very difficult
to weaken; in this case, it appears that the generic case is given by Eq. (1.1), Eq. (1.2)
representing an exceptional case; this is done in Section 2;

ii) in massive axiomatic field theory, in combination with unitarity and a standard assump-
tion of smooth behaviour of the scattering amplitude; this is carried in Section 3;

iii) starting from the perturbation expansion of λφ4 and resumming the leading logs, while
individual terms diverge like (ln k)n near k = 0. This is done in Section 4.

To us and to many of our friends and colleagues, property (1.1)-(1.2) was a great surprise even
though a related property appeared already in the theory of antennas [2].

However, it turned out that we had predecessors. Concerning i), the potential case, Bollé
and Gestezy [3] found property (1.1) for a class of potentials exponentially decreasing at infinity
and Averbush [4] treated the case of a potential with a strictly finite range. However, these
authors missed the exceptional case (1.2).

Concerning ii) and iii), Bros and Iagolnitzer [5], in the framework of general S matrix
theory, studying primarily the Riemann sheet structure of scattering amplitudes near threshold,
obtained for the two-body → two-body case an equation which implies the alternative between
(1.1) and (1.2). If one combines their paper with the early work of Bros, Epstein and Glaser
on analyticity of the scattering amplitude near physical points [6] one can consider this as
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an axiomatic proof. They also carry the resummation of a subclass of perturbation graphs,
without, however, showing that they are the ones associated to the leading logs.

In spite of this, we believe that we have the duty to present our own results with our own
methods, which we believe sometimes more accessible, covering in a synthetic way the potential
case and the field theoretical case and, in some instances, improving or correcting previous work.

2. TWO-DIMENSIONAL POTENTIAL SCATTERING

In two dimensions the partial wave expansion of the scattering amplitude T (k, θ) is given by

T (k, θ) =
1√
k

∞
∑

n=0

ǫn (eiδn sin δn) cos nθ, (2.1)

where ǫ0 = 1, ǫn = 2 for n ≥ 1. The phase shifts δn(k) are obtained in the standard way from
the solutions of the Schrödinger equation. In this paper we are interested mainly in the term
n = 0.

The n = 0 solutions, u(k, r), satisfy

[

d2

dr2
+

1

4r2
+ k2 − gV (r)

]

u(k, r) = 0. (2.2)

Without loss of generality, g is taken to be non-negative. Equation (2.2), under conditions on
V (r) to be specified below, has two independent solutions: behaving like

√
r and

√
r ln r as

r → 0. We take as a regular solution

u(k, 0) = 0, u(k, r) ∼
√

r, (2.3)

corresponding to a finite wave function at the origin. For a discussion of this choice, see
Appendix A.

The phase shift, δ0(k), is defined by

u(k, r) −→
r→∞

c
√

r [cos δ0 J0(kr) − sin δ0 Y0(kr)]. (2.4)

The sign of the second term is chosen to correspond to the definition of δ0 in the three-

dimensional case, i.e., u → c
√

π/2 cos(kr − π/4 + δ0) as r → ∞. By rearranging terms in

Eq. (2.4), we get

u(k, r) −→
r→∞

c
√

r e−iδ0 [H
(2)
0 (kr) + e2iδ0H

(1)
0 (kr)]. (2.5)

We can always choose u(k, r) such that

u(k, r) −→
r→∞

− 1

2i
√

k
[e−i(kr−π/4) + S(k)e+i(kr−π/4)], (2.6)
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where we have used the asymptotic formulas for H
(1),(2)
0 (z) for large |z|, and

S(k) ≡ e2iδ0(k). (2.7)

The Jost functions in this case are solutions of (2.2) finite at r = 0, which we denote as
f±(k, r) with the asymptotic behaviour

f±(k, r) −→
r→∞

e∓i(kr−π/4). (2.8)

We can thus write

u(k, r) = − 1

2i
√

k
[f+(k, r) + S(k)f−(k, r)]. (2.9)

It is convenient to follow a method of treating singular potentials [7].We shall see below how
this simplifies the task of taking the limit k → 0. Following ref. [7], we define g(k, r) as

g(k, r) ≡ 1

2i
√

k
[f+(k, r) + f−(k, r)]. (2.10)

The sign here is different from that in the three-dimensional case. From Eq. (2.9) we now have

u(k, r) = −[g(k, r) + A(k)f−(k, r)], (2.11)

where A(k) is the n = 0 scattering amplitude,

A(k) ≡ 1

2i
√

k
[S(k) − 1] ≡ 1√

k
eiδ0 sin δ0. (2.12)

The condition u(k, r) → 0 as r → 0 gives us

A(k) = − lim
r→0

[g(k, r)/f−(k, r)]. (2.13)

Notice that this limit is always finite. This is because f−, being a combination of Re f− and
Im f−, i.e., of two linearly independent solutions of (2.2), has to behave as f− ∼ √

r ln r as
r → 0.

The asymptotic behaviour of u(k, r) can be written as

u(k, r) −→
r→∞

i cos(kr − π/4)√
k

− A(k)ei(kr−π/4). (2.14)

This follows from Eqs. (2.8) and (2.9).

Following ref. [7], we introduce a Green’s function G(r, r′) for r, r′ > 0, defined by

[

d2

dr2
+

1

4r2
+ k2

]

G(r, r′) ≡ δ(r − r′). (2.15)
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This G is given explicitly by

G(r, r′) =
π

2

√
rr′ [J0(kr)Y0(kr′) − J0(kr′)Y0(kr)]θ(r′ − r), (2.16)

where J0 and Y0 are the standard Bessel functions of the first and second kind.

The next step is to introduce a u0(k, r) which is a solution of the free, V = 0, Schrödinger
equation. We set

u0(k, r) ≡ u(k, r) − g
∫ ∞

0
dr′ G(r, r′)V (r′)u(k, r′). (2.17)

From Eq. (2.15) it is now obvious that

[

d2

dr2
+

1

4r2
+ k2

]

u0(k, r) = 0. (2.18)

As r → ∞, u0 → u, and from Eq. (2.14) it is clear that u0 is given by

u0(k, r) =

√

π

2
i
√

r J0(kr) −
√

π

2
A(k)

√
kr H

(1)
0 (kr). (2.19)

The integral equation for u can now be written as

u(k, r) = u0(k, r) + g
∫ ∞

r
dr′ G̃(k; r, r′)V (r′)u(k, r′), (2.20)

with
G̃(k; r, r′) =

π

2

√
rr′ [J0(kr)Y0(kr′) − J0(kr′)Y0(kr)]. (2.21)

Using Eqs. (2.11) and (2.19), we can get from (2.20) two separate integral equations for g(k, r)
and f−(k, r). These are

g(k, r) = −i

√

π

2

√
r J0(kr) + g

∫ ∞

r
dr′ G̃(k; r, r′)V (r′)g(k, r′) (2.22)

and

f−(k, r) =

√

π

2

√
kr H

(1)
0 (kr) + g

∫ ∞

r
dr′ G̃(k; r, r′)V (r′)f−(k, r′). (2.23)

These last two equations are the same except for the inhomogeneous term. We are interested
in studying them in the limit of small k. Before we can do that, it is convenient to remove a√

k factor from f− and define f̃−(k, r) as

f̃−(k, r) ≡ 1√
k

f−(k, r). (2.24)

With this definition, Eq. (2.13) becomes

eiδ0(k) sin δ0(k) = − lim
r→0

[g(k, r)/f̃−(k, r)]. (2.25)

4



We now take the k → 0 limit of Eq. (2.22) and the equation corresponding to (2.23) for f̃−.
Using

π

2
[J0(kr)Y0(kr′) − J0(kr′)Y0(kr)] = ln

r′

r
+ O(k2) (2.26)

for small k, we get

g(k, r) = −i

√

π

2

√
r + g

∫ ∞

r
dr′

√
rr′

(

ln
r′

r

)

V (r′)g(k, r′) + O(k2) (2.27)

and

f̃−(k, r) = i

√

2

π

(

ln k + ln r − ln 2 + γ − i
π

2

)√
r

+ g
∫ ∞

r
dr′

√
rr′

(

ln
r′

r

)

V (r′)f̃−(k, r′) + O(k2), (2.28)

where γ is Euler’s constant. For r > 0, taking the k → 0 limit under the integral sign is allowed
if we assume ∫ ∞

a
r′ dr′ (1 + | ln r′|2) |V (r′)| < ∞, a > 0. (2.29)

We shall discuss this condition in more detail later.

At this stage, we introduce two functions, A(r) and B(r), defined by the following integral
equations:

A(r) = 1 + g
∫ ∞

r
r′ dr′

(

ln
r′

r

)

V (r′)A(r′) (2.30)

and

B(r) = ln r + g
∫ ∞

r
r′ dr′

(

ln
r′

r

)

V (r′)B(r′). (2.31)

It is clear from inspecting Eqs. (2.27) and (2.28) that

A(r) ≡ lim
k→0





ig(k, r)
√

π/2
√

r



 (2.32)

and




−if̃−(k, r)
√

2/π
√

r



 ≡
[

A(r)
(

ln k − ln 2 + γ − i
π

2

)

+ B(r)
]

+ O(k2). (2.33)

Thus, for small k we have

−
[

g(k, r)

f̃−(k, r)

]

=
(π/2)A(r)

A(r)
(

ln k − ln 2 + γ − i
π

2

)

+ B(r)
+ O(k2). (2.34)

Our task is now to study the existence of solutions A(r) and B(r) of the two integral
equations (2.30) and (2.31), and more specifically, to study the behaviour of A and B for
small r.
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In Appendix B, we shall prove that for the general class of potentials, V (r), satisfying

A)
∫ ∞

0
r′ dr′ |V (r′)| (| ln r′| + 1) < ∞ (2.35)

and
B)

∫ ∞

a
r′ dr′ |V (r′)| (ln r′)2 < ∞, a > 1, (2.36)

the solutions A(r) and B(r) exist for all r > 0, and furthermore, near r = 0 one has the
behaviour

A(r) = [−gCa(g) + o(1)] ln r (2.37)

and
B(r) = [1 − gCb(g) + o(1)] ln r. (2.38)

Here,

Ca(g) =
∫ ∞

0
r dr V (r)A(r) (2.39)

and
Cb(g) =

∫ ∞

0
r dr V (r)B(r). (2.40)

Both integrals for Ca and Cb are absolutely convergent since one can easily show that, as r → ∞,
A and B have the bounds

|A(r)| < Const., |B(r)| < Const. | ln r|, (2.41)

for r > r0 > 1. The convergence of Eqs. (2.39) and (2.40) at r = 0 is guaranteed by Eqs. (2.35),
(2.37), and (2.38).

Going back to Eq. (2.34), we write for the neighborhood of r ≈ 0:

− g(k, r)

f̃−(k, r)
=

(π/2)gCa(g) ln r + O(1)

gCa(g) ln r
(

ln k − ln 2 + γ − i
π

2

)

+ [gCb(g) − 1] ln r + O(1)
+ O(k2). (2.42)

This result leads to

eiδ0(k) sin δ0(k) =
π

2







gCa(g)

gCa(g)
(

ln k − ln 2 + γ − i
π

2

)

+ [gCb(g) − 1]





+ O(k2). (2.43)

There are now two cases to consider, Ca(g) 6= 0 and Ca(g) = 0. For Ca(g) 6= 0, we have the
universal result as k → 0,

δ0(k) =
π

2 ln k
+ O

(

1

(ln k)2

)

. (2.44)

One should note that Cb(g) is finite. A somewhat stronger form of (2.44) is that, as k → 0,

eiδ0(k) sin δ0(k) =
π

2 ln k − iπ
+ O

(

1

(ln k)2,3

)

, (2.45)
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meaning that the real part of the first term is accurate to order (ln k)−2 while the imaginary
part is accurate to (ln k)−3.

The second case, Ca(g) = 0, is clearly exceptional. If Ca(g) = 0 for any interval g1 < g < g2,
then V ≡ 0. For V 6≡ 0, Ca(g) can only vanish for discrete values of g. In this case, because of
(2.38) and (2.39), (1 − gCb) cannot vanish. Hence, it follows from (2.42) that, as k → 0,

δ0(k) = O(k2). (2.46)

Equation (2.43) also implies the uniform formula

δ0(k) =
ξ

ξ + 1

π

2 ln k − iπ
+ O

(

1

(ln k)2,3

)

(2.47)

in the same sense as (2.45), where

ξ =
gCa(g)

(

ln k − i
π

2

)

gCb(g) − 1
. (2.48)

3. THRESHOLD BEHAVIOUR IN (2+1) DIMENSIONS:

THE FIELD THEORETICAL CASE

We take as our starting point axiomatic local field theory with a minimum non-zero mass.
There is then very little difference between 2 + 1 and 3 + 1 dimensions. In both cases, the on-
shell scattering amplitude depends on two variables. The analyticity domain of the scattering
amplitude is obtained, in both cases, in two steps: i) analytic continuation of the off-shell
amplitude [6],[8] and ii) use of the positivity of the absorptive part to enlarge the analyticity
domain [9].The partial wave expansion in the (2 + 1)-dimensional case is given in terms of
Chebyshev polynomials and not Legendre polynomials. Indeed, for the (2 + 1)-dimensional
case, we have

T (s, cos θ) = 16
∞
∑

n=0

ǫnfn(s) cosnθ. (3.1)

Here, s is the square of the center-of-mass energy, and θ is the scattering angle. In the elastic
region, fn(s) is related to the phase shifts by

fn(s) =
√

s eiδn sin δn. (3.2)

This and the factor of 8 in (3.1) are chosen to give T (s, cos θ) = −g + O(g2) in φ4
3 perturbative

field theory with a (g/4!)φ4 interaction.

The absorptive part of T is

As(s, cos θ) = 16
∞
∑

n=0

ǫn · Im fn(s) cosnθ, (3.3)

7



with Im fn(s) ≥ 0, from the unitarity condition. From Eq. (3.3), it is easy to obtain

∣

∣

∣

∣

(

d

d cos θ

)n

As(s, cos θ)

∣

∣

∣

∣

≤
(

d

d cos θ

)n

As(s, cos θ)

∣

∣

∣

∣

cos θ=1
; s ≥ 4m2, (3.4)

for all θ such that −1 ≤ cos θ ≤ +1. This last inequality is precisely what made the enlargement
of the analyticity domain in the 3+1 case possible [9].Therefore, one gets the same enlargement
in 2 + 1 dimensions.

For simplicity, we consider a case with the kinematics and symmetry of pion-pion scattering
although our results are much more general. We use the Mandelstam variables

s = 4(k2 + m2),

t = 2k2(cos θ − 1),

u = 4m2 − s − t. (3.5)

For any fixed t, |t| < 4m2, T (s, t) is analytic in the doubly cut s-plane with cuts along

s = 4m2 + λ,

u = 4m2 + λ; λ > 0. (3.6)

For fixed s, the absorptive part, As(s, cos θ), is analytic inside an ellipse in the cos θ-plane,
which is an enlargement of the Lehmann ellipse [10].The foci are at cos θ = ±1 and the right
extremity is at cos θ = 1 + 4m2/2k2.

The partial wave amplitudes, fn(s), are defined as

fn(s) =
1

16π

∫ +1

−1
T (s, cos θ) cos nθ

d(cos θ)

sin θ
. (3.7)

The fn’s are analytic in a region that contains

|s − 4m2| < 4m2, (3.8)

excluding a cut along 4m2 ≤ s ≤ 8m2. A major difference with the (3 + 1)-dimensional case is
the kinematical factor

√
s which comes from unitarity as explicitly shown in Eq. (3.2), a point

clarified with the help of R. Stora [11].

Thus, the unitarity condition in 2 + 1 dimensions is

Im fn(s) ≥ 1√
s
|fn(s)|2, ∀ s > 4m2. (3.9)

In the elastic region, 4m2 ≤ s < 16m2,

Im fn(s) =
1√
s
|fn(s)|2. (3.10)

8



This slightly changed form of the unitarity condition given in Eq. (3.9), gives a different
Froissart bound [9],[12] in the (2+1) case. The number of partial waves effectively contributing
to the scattering amplitude is still bounded by

L = C
√

s ln s, (3.11)

for large s. However, the Froissart bound in 2 + 1 dimensions is

|F (s, cos θ)| < Cs ln s, −1 ≤ cos θ ≤ +1. (3.12)

This is instead of the s ln2 s in the 3 + 1 case. The number of subtractions in the dispersion
relations, for |t| < 4m2, is still at most 2, as in the 3 + 1 case [13].

The general properties outlined so far are sufficient to determine the singularity of fn(s) at
k = 0. For simplicity, we restrict ourselves to the S-wave case, although our method applies to
the higher waves. It is convenient to change variables and define

f0(s) = F0(k). (3.13)

We also set the mass m = 1. In the variable k, the analyticity domain of F0(k) contains the
half circle Γ,

Γ : {|k| < 1, and Im k > 0}. (3.14)

A very important property of T (s, t) is the reality property: T is real for s < 4, t < 4,
u < 4. From this property, it follows that f0(s) is real for 0 < s < 4, and hence F0(k) is real
for k = iκ, 0 < κ < 1. By Schwarz’s reflection principle, for k ∈ Γ, we have

F0(k) = F ∗
0 (−k∗). (3.15)

The unitarity condition, Eq. (3.10), can be written in a form suitable for analytic continu-
ation. With initially k = k∗, we write

F0(k) − F ∗
0 (k∗) =

2i√
s

F0(k)F ∗
0 (k∗). (3.16)

This gives

F0(k) =
F ∗

0 (k∗)

1 − 2i√
s

F ∗
0 (k∗)

, (3.17)

and defines a function analytic in the second sheet. This function will be the continuation to
the semicircle, |k| < 1, Im k < 0, through the line 0 < k < 1. The only thing to prevent
that would be an accumulation of zeros of [1− (2i/

√
s)F ∗

0 (k∗)] along this line, giving a natural
boundary. There is nothing in the general axioms to prevent that [14].However, it is sufficient
to assume that F0(k) is continuous on 0 < k < 1 in order to avoid this catastrophe. We thus
get the continuation of F0(k) to the second sheet [15], which, using the reality condition (3.15),
can be written as

F0(k) =
F0(−k)

1 − 2i√
s

F0(−k)
. (3.18)
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Hence, F0(k) is meromorphic for |k| < 1, outside the origin.

Let us introduce G0(k) as

G0(k) =
1

F0(k)
. (3.19)

We get

G0(k) = G0(−k) − 2i√
s
. (3.20)

Next, we define H0(k) as

H0(k) ≡ G0(k) − 2

π
√

s

(

ln k − i
π

2

)

. (3.21)

H0(k) is again real for k = iκ, 0 < κ < 1. Using Eq. (3.21), we get

H0(k) = H0(−k). (3.22)

H0 is therefore an even function of k, i.e.,

H0(k) ≡ K0(k
2). (3.23)

K0(k
2) is a meromorphic function of k2, and the S-wave amplitude can be written as

F0(k) =
1

K0(k
2) +

2

π
√

s

(

ln k − i
π

2

) . (3.24)

If K0(k
2) has no pole at the origin, the ln k dominates the denominator as k → 0, and we get

F0(k)
∼
=

π

2

√
s
(

1

ln k

)

. (3.25)

The phase shift then behaves as

δ0(k)
∼
=

π

2 ln k
, (3.26)

which is precisely the behaviour obtained in the potential case. As in the potential case, the
existence of a pole of K0(k

2) at k2 = 0 cannot be excluded.

The derivation we presented above also applies to higher waves, but it can be proved that
what is hopefully an exception for n = 0 turns out to be the rule for n ≥ 1. Kn(k2) has a pole,
and we shall show in a future publication that δn ∼ k2n for n ≥ 1.

For the restricted class of potentials such that

∫ ∞

0
r dr

∣

∣

∣1 + | ln r|
∣

∣

∣ |V (r)| expµr < ∞,

the derivation of the dispersion relations for |t| < µ2 obtained first by one of us [16] in the (3+1)
case also holds in 2 + 1 dimensions. It implies that the partial wave amplitude is analytic in
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|k| < µ/2, Im k > 0, and therefore the derivation presented in this section applies also to this
potential case.

Equation (3.17) was also obtained by Bros and Iagolnitzer in ref. [5], in a more general but
less elementary approach based on a postulated analyticity of the S-matrix which, however,
becomes axiomatic by using, as we said in the introduction, ref. [6]. These authors emphasize
the Riemann sheet structure at the threshold rather than the actual behaviour of the physical
scattering amplitude.

4. PERTURBATION THEORY FOR φ4
3

It is of importance to compare our result with perturbation theory. We are fortunate that in
(2 + 1) dimensions we have a rigorously defined super-renormalizable theory [1] with a mass
gap, namely, φ4

3.

Taking

Lint(φ) =
−g

4!
: φ4(x) :

we obtain up to order g2 for T (p1, p2;−p3,−p4)

T (s, t) = −g + g2[f(s) + f(t) + f(u)] + O(g3), (4.1)

where f(s), s = (p1 + p2)
2, is given by the Feynman diagram shown in Figure 1,

f(s) =
(−i

2

) ∫

d3k

(2π)3

1

(k2 − µ2 + iǫ)((p1 + p2 − k)2 − µ2 + iǫ)
. (4.2)

The factor (1
2
) is for identical outgoing particles, and the (−i) follows from S = 1+ iT , S being

the S-matrix.

This last integral can be easily evaluated in the Euclidean region, s < 4µ2, by carrying out
a Wick rotation, and the result is

f(s) = − 1

16π
√

s
ln
(

2µ −√
s

2µ +
√

s

)

, 0 < s < 4µ2. (4.3)

The normalization of T is chosen such that elastic unitarity is given by

1

2i
(T − T ∗) =

1

16
√

s

∫ 2π

0

dθ

2π
|T (s, θ)|2, 4µ2 ≤ s < 16µ2. (4.4)

The partial wave expansion is then

T (s, θ) = 16
√

s
∑

n

ǫn cos nθ eiδn sin δn. (4.5)
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As s → 4µ2, k → 0, then for physical θ, t → 0, u → 0, and the leading log term comes
from (4.3), since f(0) is finite.

We get for k → 0

T = −g − g2

32πµ
ln

k2

µ2
+ O(1)g2 + O(g3). (4.6)

The first thing to notice is that at order g2, T diverges as k → 0. This is just the opposite of
the full result we obtained in the previous section where T → 0 as k → 0.

In third order, the leading ln k behaviour comes from the two-bubble diagram shown in
Figure 2. The triangle diagram in Figure 3 is only of order (ln k). We conjecture that this
continues in higher orders, and the leading (ln k) approximation is given by

T
∼
= −g

∞
∑

n=0

(

g ln(k/µ)

16πµ

)n

, k → 0. (4.7)

This sum is divergent for k < µ exp(−16πµ/g). Thus the present perturbation calculation does
not give a meaningful result. If we ignore this divergence and sum the geometric series formally,
the result is

T
∼
= −g















1

1 −
(

g ln(k/µ)

16πµ

)















. (4.8)

However, as k → 0, s → 4µ2,
T

16
√

s
∼
= eiδ0 sin δ0. (4.9)

We thus recover the potential scattering result as k → 0,

eiδ0(k) sin δ0(k) ∼ −g

32µ









1

−g ln(k/µ)

16πµ









(4.10)

and

δ0(k) ∼ π

2

1

ln(k/µ)
, k → 0. (4.11)

φ4
3 is a well-defined theory, both perturbatively and non-perturbatively, and it is clear from

our results that as k → 0 perturbation theory gives the wrong answer. It is perhaps interesting
to note that φ4

3 is asymptotically free. If our conjecture on the higher-order (ln k) behaviour
is correct, then this would be the first completely rigorous demonstration of how perturbation
theory order by order could be extremely misleading. Such a resummation is also present in
ref. [5].
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5. REMARKS AND CONCLUSIONS

We close this paper with three significant remarks.

i) The power of elastic unitarity together with analyticity is clearly demonstrated by the
following remark stressed to us by Porrati [17]. Once we are given a phase-shift behaviour such
that

a0(k) = eiδ0(k) sin δ0(k) =
c

ln k − i
π

2

+ O

(

1

(ln k)1+ǫ

)

, k → 0, (5.1)

then unitarity alone fixes c to be c = π/2, since

a∗
0(k) = a0(−k) =

c

ln |k| − i
π

2

+ O

(

1

(ln−k)1+ǫ

)

. (5.2)

The factors (iπ/2) are necessary to keep a0(k) real for k purely imaginary and Im k > 0. Hence
we get

Im a0(k) =
π

2

c

(ln k)2
+ O

(

1

(ln k)2+ǫ

)

. (5.3)

From Im a0 = |a0|2, we obtain, when c 6= 0,

c = π/2. (5.4)

It should be pointed out, however, that this argument requires analyticity in k in a semicircle
in Im k > 0, and hence only applies to exponentially decreasing potentials.

ii) In one dimension, the simplest potential is the δ-function potential. In two or three
dimensions, the corresponding simplest potential is the so-called point interaction, which is the
same as the Fermi pseudopotential. There is a large literature on the Fermi pseudopotential.

Recently, Jackiw [18] obtained the phase shift δ0(k) for the point interaction in two dimen-
sions. Although this potential does not belong to the class considered in Section 2, his result
for k → 0 agrees with that of ref. [1] and ours; see Eq. (3.26) in his paper. It should be
stressed, however, that our relativistic result holds for any 2 + 1 field theory with the standard
analyticity and without zero-mass particles; we are not restricted to φ4

3.

iii) In a φ4-type field theory, the renormalized coupling constant is defined by the value of
the 2 → 2 scattering amplitude, T (s, t, u), evaluated at some Euclidean point (s, t, u) < 4µ2,
often for convenience taken to be the symmetric point s = t = u = 4µ2/3. In (3+1) dimensions,
given the well-established analyticity and unitarity properties of T , it has been shown in many
papers [19] that the coupling constant is bounded. Some of these bounds are surprisingly
strong. In φ4

3, Glimm and Jaffe [1] obtained bounds directly from constructive field theory, but
their results are weaker than what can be obtained from analyticity and unitarity.

The general methods used in the papers cited in ref. [19] for the (3 + 1) case can be easily
modified to apply to (2 + 1) dimensions. Only the kinematic factor outside the partial wave
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expansion is different. The results of this paper thus present us with a new and significant
challenge. We have now a new piece of information on the scattering amplitude which is exact.
Namely, we know that

T (s, t, u) ln

√
s − 4µ2

2µ
→ 16πµ as s → 4µ2, t → 0, u → 0,

i.e., at certain points on the Mandelstam triangle. Given the power of unitarity and analyticity,
we are quite confident that this new input will improve the bounds on the coupling constant.
Only the magnitude of the improvement is in question. Work on this problem is in progress.
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Appendix A.

In this appendix, we study briefly the equation (2.2), together with the Dirichlet boundary
condition (2.3). We start with the free equation,

(

d2

dr2
+

1

4r2
+ k2

)

u(k, r) = 0, (A. 1)

with u(k, 0) = 0. Because of the presence of the attractive singular potential, −1/(4r2), one
must be careful in the extension of the differential operator, −(d2/dr2) − (1/4r2), to a self-
adjoint operator on L2(0,∞). This has been thoroughly studied in the literature [20],[21]. We
quote the result here. The two independent fundamental solutions of (A. 1) are

√
r J0(kr) and√

r Y0(kr). Both vanish at the origin. Every other solution, being a linear combination of these
two, also vanishes at r = 0. Therefore, we are in the limit-circle case for the differential operator
with a Dirichlet boundary condition at r = 0. There exist an infinite number of self-adjoint
extensions of the symmetric differential operator, depending on one (real) parameter. Each self-
adjoint extension is defined by the amount of mixing of the two fundamental solutions. Among
all these extensions, there exists a “distinguished” one, which corresponds to taking the pure
Bessel solution

√
r J0(kr). These generalized eigenfunctions are less singular, behaving like

√
r

at the origin, as compared to the eigenfunctions of all other extensions, which behave like
√

r ln r
as r → 0. Moreover, it can be shown that the “distinguished” extension corresponds to the
Friedrichs extension [21],[22]. But, for the physicist, the more important fact is this: in all the
other self-adjoint extensions, there exists, besides the continuum, a negative energy eigenvalue.
In other words, there exists always a real bound state with negative energy, E0 = k2

0 < 0
[20],[21].

The extension Hλ is defined by taking the behaviour, as r → 0,

u(r) →
√

r + λ
√

r ln r; λ real. (A. 2)

It is then easy to check that if we define a solution such that

√
r [J0(kr) + Y0(kr)]−→

r→0

√
r + λ

√
r ln r, (A. 3)

then an elementary calculation shows that, by setting k = +iκ0, we get

ln κ0 =
1 − λ(γ − ln 2)

λ
, (A. 4)

where γ is the Euler constant. Thus, for any real λ, λ > 0, we have a bound state at E = −κ2
0(λ).

There is no such bound state in the “distinguished” extension. However, in this case we are
just at the threshold of having a bound state. More precisely, in the “distinguished” extension,
if we add to the free Hamiltonian a purely attractive (negative) potential, no matter how weak
it happens to be, there appears a true bound state. This fact is well established in the literature
using a variational argument.
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As an aside here we give the upper bound of Setô [23] on the number N of bound states for
dimension = 2, and l = 0. This is the 2-dimensional version of the old Bargmann inequality
for d = 3. The Setô bound is

N0
2 ≤ 1 +

1

2

∫ ∞

0
dr
∫ ∞

0
dr′

∣

∣

∣

∣

ln
r

r′

∣

∣

∣

∣

V (r) V (r′)

−
∫ ∞

0
r V (r) dr

, (A. 5)

where, given our assumptions on V (r), all the integrals are finite. The fact that there is always
a bound state, regardless of how weak an attractive potential V may be, is somehow reflected
by the presence of 1 in the right-hand side of (A. 5). This cannot be improved.

In any case, this last property of the “distinguished” extension of the free differential opera-
tor to a self-adjoint operator without a bound state is the most important criterion by which we
must choose this extension, and discard all others. As physicists, we do not have the freedom
to start with a “free Hamiltonian” that binds a free particle. Mathematicians have this luxury.

We finally come to the equation (2.2) itself. Starting from the “distinguished” extension
of the free Hamiltonian, and adding to it a potential V , does not alter the self-adjointness,
provided V is “weak” in the sense of Kato and others [22],[24]. The condition defining this
“weak” class is expressed precisely in the following integrability condition on the potential:

∫ ∞

0
r dr (1 + | ln r|) |V (r)| < ∞. (A. 6)

This ensures the semi-boundedness of the total Hamiltonian, and the finiteness of the number
of bound states. Note that (A. 6) is precisely the condition (2.35) which we had to use in
section II. We shall need it in Appendix B to establish the existence and study the properties
of the solutions of the two integral equations (2.30) and (2.31).

To conclude this appendix, let us point out that an extension different from the “distin-
guished” one can be used to simulate a renormalized delta-function interaction, as was done by
Jackiw [18].

Appendix B.

In this appendix we study the integral equations (2.30) and (2.31). For the class of potentials
satisfying Eqs. (2.35) and (2.36), we first prove that the solutions A(r) and B(r) exist and are
bounded, as r → ∞, as in Eq. (2.41). Next, we prove that the behaviour of A(r) and B(r)
as r → 0 is given by Eqs. (2.37) and (2.38), respectively. We will only give the details for Eq.
(2.31). The procedure for Eq. (2.30) is easier and very similar.

Our starting point is the integral equation

B(r) = ln r + g
∫ ∞

r
r′ dr′

(

ln
r′

r

)

V (r′)B(r′). (B. 1)
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We can first consider the case r′ ≥ r ≥ 1, where we have the inequality

0 ≤ ln
r′

r
≤ ln r′. (B. 2)

Therefore, an upper bound B̄ is obtained for B by replacing the integral equation (B. 1) by

B̄(r) = ln r + g
∫ ∞

r
r′ dr′ |V (r′)| ln r′ B̄(r′), r > 1. (B. 3)

The solution of (B. 3) can be obtained by standard methods and is given by

B̄(r) =
[∫ r

1

dt

t
exp

(

−g
∫ ∞

t
u |V (u)| ln u du

)

+ C
]

exp
(

g
∫ ∞

r
t |V (t)| ln t dt

)

. (B. 4)

The constant C is given by

C =
∫ ∞

1

1

r

[

1 − exp
(

−g
∫ ∞

r
t |V (t)| ln t dt

)]

dr, (B. 5)

which is finite given (2.35). Using this result in (B. 4), we find that

B̄(r) = [1 + o(1)] ln r, as r → ∞. (B. 6)

This establishes the bound on B(r) for r ≥ 1,

|B(r)| ≤ C1 ln r + D1, (B. 7)

where C1 and D1 are positive constants depending on g.

By the same technique, we arrive at similar conclusions for A(r). This time, the bounding
condition for Ā(r) is Ā(∞) = 1. We obtain

Ā(r) = 1 + o(1), as r → ∞ (B. 8)

and
|A(r)| ≤ Ā(r) ≤ D2, r ≥ 1, (B. 9)

where D2 is a positive constant.

From these bounds one can easily get, as r → ∞,

A(r) = 1 + o(1); B(r) = [1 + o(1)] ln r. (B. 10)

It is important to note that for the first estimate we need only the condition (2.35), whereas
for the second we need (2.36).

Finally, we consider the region r < 1 for both A(r) and B(r). The case for B(r) is more
delicate (singular), and we treat it first.

We can write (B. 1) as

B(r) = ln r + g
∫ 1

r
r′
(

ln
r′

r

)

V (r′)B(r′) dr′ + g
∫ ∞

1
r′
(

ln
r′

r

)

V (r′)B(r′) dr′. (B. 11)
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In the second integral, since r′ ≥ 1 and r < 1, we can use the bound (B. 7) and get, using
condition (2.29),

∣

∣

∣

∣

∣

∫ ∞

1
r ln

r′

r
V (r′)B(r′) dr′

∣

∣

∣

∣

∣

< C + D
(

ln
1

r

)

, (B. 12)

where C and D are positive constants. In the first integral, we have
∣

∣

∣

∣

∣

ln
r′

r

∣

∣

∣

∣

∣

≤ | ln r|, r < r′ ≤ 1. (B. 13)

An upper bound, ¯̄B(r), for B(r) in r ≤ 1 is now obtained by substituting (B. 12) and
(B. 13) in (B. 11). We obtain the integral equation

¯̄B(r) = C2 + D2 | ln r| + g | ln r|
[∫ 1

r
r′ |V (r′)| ¯̄B(r′) dr′

]

, (B. 14)

with some positive constants C2 and D2.

The solution of (B. 14) can be obtained by elementary methods. It is

¯̄B(r) = Z(r) g | ln r|
[

C3 +
∫ 1

r
r′|V (r′)|[C2 + D2 | ln r′|]

(

Z−1(r′)
)

dr′

+ C2 + D2 | ln r|, (B. 15)

where

Z(r) = exp
[∫ 1

r
dr′ gr′ | ln r′| |V (r′)|

]

. (B. 16)

Noting that Z(r) is bounded for 0 ≤ r ≤ 1, from the condition (2.35), we get

|B(r)| ≤ ¯̄B(r) < λ + µ | ln r|. (B. 17)

In the same way, we can analyze the integral equation (2.30) for A(r). We again find that,
for r → 0,

|A(r)| ≤ λ1 | ln r| + µ1. (B. 18)

Using these two bounds, we can now prove the asymptotic estimates (2.37) and (2.38).
From Eq. (2.30), we get, as r → 0,

A(r) = −gCa ln r + g
∫ ∞

r
r′ ln r′ V (r′)A(r′) dr′ + 1. (B. 19)

This can be written as

A(r) = −gCa ln r + g
∫ 1

r
r′ ln r′ V (r′)A(r′) dr′ + O(1). (B. 20)

The integral in (B. 20) could diverge as r → 0. However, setting

I(r) = g
∫ 1

r
r′ ln r′ V (r′)A(r′) dr′, (B. 21)
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and using (B. 18), we get

|I(r)| < gλ1

∫ 1

r
r′ | ln r′|2|V (r′)| dr′ + gµ1

∫ 1

r
r′ | ln r′| |V (r′)| dr′

< gλ1

∫ 1

r
r′ | ln r′|2|V (r′)| dr′ + O(1). (B. 22)

Next we define
F (r) ≡ r2 | ln r|2 |V (r)|. (B. 23)

From the condition (2.35), we have

∫ 1

0
dr′ r′ | ln r′| V (r) =

∫ 1

0

dr′

r′ | ln r′| · F (r′) < const. (B. 24)

This implies that F (r) → 0 as r → 0. From Eqs. (B. 22) and (B. 23), we get

|I(r)| ≤ gλ1

∫ 1

r

dr′

r′
F (r′) + O(1), (B. 25)

and, hence, since F (r′) vanishes as r′ → 0,

|I(r)| = | ln r|o(1). (B. 26)

This establishes Eq. (2.37). For Eq. (2.38), the derivation is similar.

It is important to notice that, if A(r)/ ln r → 0 as r → 0, then B(r)/ ln r cannot approach
zero as r → 0. This is because A and B are solutions of the same differential equation,

d

dr

(

r
dX

dr

)

= −grV (r)X(r),

and are thus linearly independent.
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