2,141 research outputs found

    Event-related potentials elicited by spoken relative clauses

    No full text
    Sentence-length event-related potential (ERP) waveforms were obtained from 23 scalp sites as 24 subjects listened to normally spoken sentences of various syntactic structures. The critical materials consisted of 36 sentences each containing one of 2 types of relative clauses that differ in processing difficulty, namely Subject Object (SO) and Subject Subject (SS) relative clauses. Sentence-length ERPs showed several differences in the slow scalp potentials elicited by SO and SS sentences that were similar in their temporal dynamics to those elicited by the same stimuli in a word-by-word reading experiment, although the effects in the two modalities have non identical distributions. Just as for written sentences, there was a large, fronto-central negativity beginning at the linguistically defined "gap" in the SO sentences; this effect was largest for listeners with above-median comprehension rates, and is hypothesized to index changes in on-line processing demands during comprehension

    Decoding Neural Activity to Assess Individual Latent State in Ecologically Valid Contexts

    Full text link
    There exist very few ways to isolate cognitive processes, historically defined via highly controlled laboratory studies, in more ecologically valid contexts. Specifically, it remains unclear as to what extent patterns of neural activity observed under such constraints actually manifest outside the laboratory in a manner that can be used to make an accurate inference about the latent state, associated cognitive process, or proximal behavior of the individual. Improving our understanding of when and how specific patterns of neural activity manifest in ecologically valid scenarios would provide validation for laboratory-based approaches that study similar neural phenomena in isolation and meaningful insight into the latent states that occur during complex tasks. We argue that domain generalization methods from the brain-computer interface community have the potential to address this challenge. We previously used such an approach to decode phasic neural responses associated with visual target discrimination. Here, we extend that work to more tonic phenomena such as internal latent states. We use data from two highly controlled laboratory paradigms to train two separate domain-generalized models. We apply the trained models to an ecologically valid paradigm in which participants performed multiple, concurrent driving-related tasks. Using the pretrained models, we derive estimates of the underlying latent state and associated patterns of neural activity. Importantly, as the patterns of neural activity change along the axis defined by the original training data, we find changes in behavior and task performance consistent with the observations from the original, laboratory paradigms. We argue that these results lend ecological validity to those experimental designs and provide a methodology for understanding the relationship between observed neural activity and behavior during complex tasks

    Measurement of Untruncated Nuclear Spin Interactions via Zero- to Ultra-Low-Field Nuclear Magnetic Resonance

    Full text link
    Zero- to ultra-low-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultra-low-field NMR measurements of residual dipolar couplings in acetonitrile-2-13^{13}C aligned in stretched polyvinyl acetate gels. This represents the first investigation of dipolar couplings as a perturbation on the indirect spin-spin JJ-coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultra-low-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.Comment: 6 pages, 3 figure

    Maternal obesity has little effect on the immediate offspring but impacts on the next generation

    Get PDF
    Maternal obesity during pregnancy has been linked to an increased risk of obesity and cardiometabolic disease in the offspring, a phenomenon attributed to developmental programming. Programming effects may be transmissible across generations through both maternal and paternal inheritance, although the mechanisms remain unclear. Using a mouse model, we explored the effects of moderate maternal diet-induced obesity (DIO) on weight gain and glucose-insulin homeostasis in first-generation (F1) and second-generation offspring. DIO was associated with insulin resistance, hyperglycemia and dyslipidemia before pregnancy. Birth weight was reduced in female offspring of DIO mothers (by 6%, P = .039), and DIO offspring were heavier than controls at weaning (males by 47%, females by 27%), however there were no differences in glucose tolerance, plasma lipids, or hepatic gene expression at 6 months. Despite the relative lack of effects in the F1, we found clear fetal growth restriction and persistent metabolic changes in otherwise unmanipulated second-generation offspring with effects on birth weight, insulin levels, and hepatic gene expression that were transmitted through both maternal and paternal lines. This suggests that the consequences of the current dietary obesity epidemic may also have an impact on the descendants of obese individuals, even when the phenotype of the F1 appears largely unaffected

    Contraction of the Ventral Abdomen Potentiates Extracardiac Retrograde Hemolymph Propulsion in the Mosquito Hemocoel

    Get PDF
    BACKGROUND: Hemolymph circulation in mosquitoes is primarily controlled by the contractile action of a dorsal vessel that runs underneath the dorsal midline and is subdivided into a thoracic aorta and an abdominal heart. Wave-like peristaltic contractions of the heart alternate in propelling hemolymph in anterograde and retrograde directions, where it empties into the hemocoel at the terminal ends of the insect. During our analyses of hemolymph propulsion in Anopheles gambiae, we observed periodic ventral abdominal contractions and hypothesized that they promote extracardiac hemolymph circulation in the abdominal hemocoel. METHODOLOGY/PRINCIPAL FINDINGS: We devised methods to simultaneously analyze both heart and abdominal contractions, as well as to measure hemolymph flow in the abdominal hemocoel. Qualitative and quantitative analyses revealed that ventral abdominal contractions occur as series of bursts that propagate in the retrograde direction. Periods of ventral abdominal contraction begin only during periods of anterograde heart contraction and end immediately following a heartbeat directional reversal, suggesting that ventral abdominal contractions function to propel extracardiac hemolymph in the retrograde direction. To test this functional role, fluorescent microspheres were intrathoracically injected and their trajectory tracked throughout the hemocoel. Quantitative measurements of microsphere movement in extracardiac regions of the abdominal cavity showed that during periods of abdominal contractions hemolymph flows in dorsal and retrograde directions at a higher velocity and with greater acceleration than during periods of abdominal rest. Histochemical staining of the abdominal musculature then revealed that ventral abdominal contractions result from the contraction of intrasegmental lateral muscle fibers, intersegmental ventral muscle bands, and the ventral transverse muscles that form the ventral diaphragm. CONCLUSIONS/SIGNIFICANCE: These data show that abdominal contractions potentiate extracardiac retrograde hemolymph propulsion in the abdominal hemocoel during periods of anterograde heart flow

    The ICDP Lake Bosumtwi Drilling Project: A First Report

    Get PDF
    The 10.5 -km-diameter, 1.07-Ma Bosumtwi impact crater was the subject of a multi-disciplinary and international drilling effort of the International Continental Scientific Drilling Program (ICDP) from July to October 2004. Sixteen different holes were drilled at six locations within the lake, to a maximum depth of 540 m. A total of about 2.2 km of core material was obtained. Despite some technical and logistical challenges, the project has been very successful and it is anticipated that the first scientific results will be available in late 2005

    New insights about the introduction of the Portuguese oyster, Crassostrea angulata, into the North East Atlantic from Asia based on a highly polymorphic mitochondrial region

    Get PDF
    It is commonly presumed that the Portuguese oyster Crassostrea angulata was introduced into the North East (NE) Atlantic from Asia. The analysis of the nucleotide sequence of a highly polymorphic non-coding mitochondrial region (major noncoding region - MNR) of C. angulata samples collected in Europe (Portugal), Africa (Morocco) and Asia (Shantou and Taiwan) provided new insight into the introduction of this species into the NE Atlantic. Sixty haplotypes and a nucleotide diversity of 0.0077 were observed in 130 analyzed sequences. Higher nucleotide diversity levels were observed in NE Atlantic sites than in Asian sites and significant genetic differentiation was found between the two. Our results suggest that C. angulata might have been introduced to the NE Atlantic by multiple introductory events, though the exact origins remain unknown since none of the analyzed Asian sites seemed to have been a source of introduction. The nucleotide diversity of C. angulata was higher than that previously reported for Pacific oyster C. gigas in Europe and Asia for the same mitochondrial region. The results obtained in the present study suggest that NE Atlantic C. angulata stocks are a unique genetic resource, which highlights the importance of their conservation

    Novel functional hepatitis C virus glycoprotein isolates identified using an optimised viral pseudotype entry assay

    Get PDF
    Retrovirus pseudotypes are a highly tractable model used to study the entry pathways of enveloped viruses. This model has been extensively applied to the study of the hepatitis C virus (HCV) entry pathway, pre-clinical screening of antiviral antibodies and for assessing the phenotype of patient-derived viruses using HCV pseudoparticles (HCVpp) possessing the HCV E1 and E2 glycoproteins. However, not all patient-isolated clones produce particles that are infectious in this model. This study investigated factors that might limit phenotyping of patient-isolated HCV glycoproteins. Genetically related HCV glycoproteins from individual patient quasispecies were discovered to behave very differently in this entry model. Empirical optimisation of the ratio of packaging construct and glycoprotein-encoding plasmid was required for successful HCVpp genesis for different clones. The selection of retroviral packaging construct also influenced the function of HCV pseudoparticles. Some glycoprotein constructs tolerated a wide range of assay parameters, while others were much more sensitive to alterations. Furthermore, glycoproteins previously characterised as unable to mediate entry were found to be functional. These findings were validated using chimeric cell-cultured HCV bearing these glycoproteins. Using the same empirical approach we demonstrated that generation of infectious ebolavirus pseudoviruses (EBOVpv) were also sensitive to the amount, and ratio, of plasmids used, and that protocols for optimal production of these pseudoviruses is dependent on the exact virus glycoprotein construct. These findings demonstrate that it is crucial for studies utilising pseudoviruses to conduct empirical optimisation of pseudotype production for each specific glycoprotein sequence to achieve optimal titres and facilitate accurate phenotyping

    A comparison of pneumolysin activity and concentration in vitro and in vivo in a rabbit endophthalmitis model

    Get PDF
    The purpose of this study was to determine whether the in vitro activity and concentration of Streptococcus pneumoniae pneumolysin correlated to the pathogenesis of S. pneumoniae endophthalmitis. Five S. pneumoniae clinical endophthalmitis strains were grown in media to similar optical densities (OD), and extracellular milieu was tested for pneumolysin activity by hemolysis of rabbit red blood cells. Pneumolysin concentration was determined using a sandwich ELISA. Rabbit vitreous was injected with 102 colony-forming units (CFU) of 1 of 2 different strains with low hemolytic activity (n = 10 and 12 for strains 4 and 5, respectively) or 1 of 3 different strains with high hemolytic activity (n = 12 per strain). Pathogenesis of endophthalmitis infection was graded by slit lamp examination (SLE) at 24 hours post-infection. Bacteria were recovered from infected vitreous and quantitated. The SLE scores of eyes infected with strains having high hemolytic activity were significantly higher than the scores of those infected with strains having low hemolytic activity (P < 0.05). Pneumolysin concentration in vitro, however, did not correlate with hemolysis or severity of endophthalmitis. Bacterial concentrations from the vitreous infected with 4 of the strains were not significantly different (P > 0.05). These data suggest that pneumolysin hemolytic activity in vitro directly correlates to the pathogenesis of S. pneumoniae endophthalmitis. The protein concentration of pneumolysin, however, is not a reliable indicator of pneumolysin activity
    corecore