10,499 research outputs found

    The rotational broadening and the mass of the donor star of GRS 1915+105

    Full text link
    The binary parameters of the microquasar GRS 1915+105 have been determined by the detection of Doppler-shifted 12CO and 13CO lines in its K-band spectrum (Greiner et al., 2001, Nature, 414, 522). Here, we present further analysis of the same K-band VLT spectra and we derive a rotational broadening of the donor star of V sin i=26+-3 km/s from the 12CO/13CO lines. Assuming that the K-type star is tidally locked to the black hole and is filling its Roche-lobe surface, then the implied mass ratio is q = M_d/M_x = 0.058+-0.033. This result, combined with (P, K, i)=(33.5 d, 140 km/s, 66 deg) gives a more refined mass estimate for the black hole, Mx=14.0+−4.4M⊙M_x=14.0+-4.4 M_{\odot}, than previously estimated, using an inclination of i=66+-2 deg (Fender et al. 1999) as derived from the orientation of the radio jets and a more accurate distance. The mass for the early K-type giant star is Md=0.81±0.53M⊙M_d=0.81\pm0.53 M_{\odot}, consistent with a more evolved stripped-giant donor star in GRS 1915+105 than, for example, the donor star of the prototype black-hole X-ray transient, V404 Cyg which has the longest binary period after GRS 1915+105.Comment: 4 pages, 1 figure, A&A Lette

    A Tumbling Top-Quark Condensate Model

    Full text link
    We propose a renormalizable model with no fundamental scalars which breaks itself in the manner of a "tumbling" gauge theory down to the standard model with a top-quark condensate. Because of anomaly cancellation requirements, this model contains two color sextet fermions (quixes), which are vector-like with respect to the standard model gauge group. The model also has a large number of pseudo-Nambu-Goldstone bosons, some of which can be light. The top-quark condensate is responsible for breaking the electroweak gauge symmetry and gives the top quark a large mass. We discuss the qualitative features and instructive shortcomings of the model in its present form. We also show that this model can be naturally embedded into an aesthetically pleasing model in which the standard model fermion families appear symmetrically.Comment: 16 pages. v2: TeX formatting fixed, no other change

    Evaluation of two lyophilized molecular assays to rapidly detect foot-and-mouth disease virus directly from clinical samples in field settings

    Get PDF
    Accurate, timely diagnosis is essential for the control, monitoring and eradication of foot‐and‐mouth disease (FMD). Clinical samples from suspect cases are normally tested at reference laboratories. However, transport of samples to these centralized facilities can be a lengthy process that can impose delays on critical decision making. These concerns have motivated work to evaluate simple‐to‐use technologies, including molecular‐based diagnostic platforms, that can be deployed closer to suspect cases of FMD. In this context, FMD virus (FMDV)‐specific reverse transcription loop‐mediated isothermal amplification (RT‐LAMP) and real‐time RT‐PCR (rRT‐PCR) assays, compatible with simple sample preparation methods and in situ visualization, have been developed which share equivalent analytical sensitivity with laboratory‐based rRT‐PCR. However, the lack of robust ‘ready‐to‐use kits’ that utilize stabilized reagents limits the deployment of these tests into field settings. To address this gap, this study describes the performance of lyophilized rRT‐PCR and RT‐LAMP assays to detect FMDV. Both of these assays are compatible with the use of fluorescence to monitor amplification in real‐time, and for the RT‐LAMP assays end point detection could also be achieved using molecular lateral flow devices. Lyophilization of reagents did not adversely affect the performance of the assays. Importantly, when these assays were deployed into challenging laboratory and field settings within East Africa they proved to be reliable in their ability to detect FMDV in a range of clinical samples from acutely infected as well as convalescent cattle. These data support the use of highly sensitive molecular assays into field settings for simple and rapid detection of FMDV

    Suppression of static stripe formation by next-neighbor hopping

    Full text link
    We show from real-space Hartree-Fock calculations within the extended Hubbard model that next-nearest neighbor (t') hopping processes act to suppress the formation of static charge stripes. This result is confirmed by investigating the evolution of charge-inhomogeneous corral and stripe phases with increasing t' of both signs. We propose that large t' values in YBCO prevent static stripe formation, while anomalously small t' in LSCO provides an additional reason for the appearance of static stripes only in these systems.Comment: 4 pages, 5 figure

    Space and place as expressive categories in videogames

    Get PDF
    This thesis sets out to explore some of the ways in which videogames use space as a means of expression. This expression takes place in two registers: representation and embodiment. Representation is understood as a form of expression in which messages and ideas are communicated. Embodiment is understood as a form of expression in which the player is encouraged to take up a particular position in relation to the game. This distinction between representation and embodiment is useful analytically but the thesis attempts to synthesise these modes in order to account for the experience of playing videogames, where representation and embodiment are constantly happening and constantly influencing and shaping each other. Several methods are developed to analyse games in a way that brings these two modes to the fore. The thesis attempts to arrive at a number of spatial aesthetics of videogames by adapting methods from game studies, literary criticism, phenomenology, onomastics (the study of names), cartographic theory, choreography and architectural and urban formation analysis.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Design and Field Test of a Mass Efficient Crane for Lunar Payload Handling and Inspection: The Lunar Surface Manipulation System

    Get PDF
    Devices for lifting, translating and precisely placing payloads are critical for efficient Earthbased construction operations. Both recent and past studies have demonstrated that devices with similar functionality will be needed to support lunar outpost operations. Lunar payloads include: a) prepackaged hardware and supplies which must be unloaded from landers and then accurately located at their operational site, b) sensor packages used for periodic inspection of landers, habitat surfaces, etc., and c) local materials such as regolith which require grading, excavation and placement. Although several designs have been developed for Earth based applications, these devices lack unique design characteristics necessary for transport to and use on the harsh lunar surface. These design characteristics include: a) composite components, b) compact packaging for launch, c) simple in-field reconfiguration and repair, and d) support for tele-operated or automated operations. Also, in contrast to Earth-based construction, where special purpose devices dominate a construction site, a lunar outpost will require versatile devices which provide operational benefit from initial construction through sustained operations. This paper will detail the design of a unique, high performance, versatile lifting device designed for operations on the lunar surface. The device is called the Lunar Surface Manipulation System to highlight the versatile nature of the device which supports conventional cable suspended crane operations as well as operations usually associated with a manipulator such as precise positioning where the payload is rigidly grappled by a tool attached to the tip of the device. A first generation test-bed to verify design methods and operational procedures is under development at the NASA Langley Research Center and recently completed field tests at Moses Lake Washington. The design relied on non-linear finite element analysis which is shown to correlate favorably with laboratory experiments. A key design objective, reviewed in this paper, is the device s simplicity, resulting from a focus on the minimum set of functions necessary to perform payload offload. Further development of the device has the potential for significant mass savings, with a high performance device incorporating composite elements estimated to have a mass less than 3% of the mass of the maximum lunar payload lifted at the tip. The paper will conclude with future plans for expanding the operational versatility of the device

    A Modular, Reusable Latch and Decking System for Securing Payloads During Launch and Planetary Surface Transport

    Get PDF
    Efficient handling of payloads destined for a planetary surface, such as the moon or Mars, requires robust systems to secure the payloads during transport on the ground, in-space and on the planetary surface. In addition, mechanisms to release the payloads need to be reliable to ensure successful transfer from one vehicle to another. An efficient payload handling strategy must also consider the devices available to support payload handling. Cranes used for overhead lifting are common to all phases of payload handling on Earth. Similarly, both recent and past studies have demonstrated that devices with comparable functionality will be needed to support lunar outpost operations. A first generation test-bed of a new high performance device that provides the capabilities of both a crane and a robotic manipulator, the Lunar Surface Manipulation System (LSMS), has been designed, built and field tested and is available for use in evaluating a system to secure payloads to transportation vehicles. National Institute of Aerospace, Hampton Va 23662 A payload handling approach must address all phases of payload management including: ground transportation, launch, planetary transfer and installation in the final system. In addition, storage may be required during any phase of operations. Each of these phases requires the payload to be lifted and secured to a vehicle, transported, released and lifted in preparation for the next transportation or storage phase. A critical component of a successful payload handling approach is a latch and associated carrier system. The latch and carrier system should minimize requirements on the: payload, carrier support structure and payload handling devices as well as be able to accommodate a wide range of payload sizes. In addition, the latch should; be small and lightweight, support a method to apply preload, be reusable, integrate into a minimal set of hard-points and have manual interfaces to actuate the latch should a problem occur. A latching system which meets these requirements has been designed and fabricated and will be described in detail. This latching system works in conjunction with a payload handling device such as the LSMS, and the LSMS has been used to test first generation latch and carrier hardware. All tests have been successful during the first phase of operational evaluations. Plans for future tests of first generation latch and carrier hardware with the LSMS are also described

    A Versatile Lifting Device for Lunar Surface Payload Handling, Inspection and Regolith Transport Operations

    Get PDF
    Devices for lifting and transporting payloads and material are critical for efficient Earth-based construction operations. Devices with similar functionality will be needed to support lunar-outpost construction, servicing, inspection, regolith excavation, grading and payload placement. Past studies have proposed that only a few carefully selected devices are required for a lunar outpost. One particular set of operations involves lifting and manipulating payloads in the 100 kg to 3,000 kg range, which are too large or massive to be handled by unassisted astronauts. This paper will review historical devices used for payload handling in space and on earth to derive a set of desirable features for a device that can be used on planetary surfaces. Next, an innovative concept for a lifting device is introduced, which includes many of the desirable features. The versatility of the device is discussed, including its application to lander unloading, servicing, inspection, regolith excavation and site preparation. Approximate rules, which can be used to size the device for specific payload mass and reach requirements, are provided. Finally, details of a test-bed implementation of the innovative concept, which will be used to validate the structural design and develop operational procedures, is provided
    • 

    corecore